
MIPS Pseudo-Instructions

Pseudo-instructions are legal MIPS assembly language instructions that do not have a direct hardware implementation.
They are provided as a convenience for the programmer. When you use pseudo-instructions in a MIPS assembly language
program, the assembler translates them into equivalent real MIPS instructions.

Here is a list of the some commonly used pseudo-instructions.

Task Pseudo-Instruction Programmer Writes Assembler Translates To

Move the contents of one
register to another.

move <dest> <source> move $t0, $s0 addu $t0, $zero, $s0

Load a constant into a register.
(Negative values are handled
slightly differently.) ”li” stands
for load immediate.

li <dest> <immed> li $s0, 10 ori $s0, $zero, 10

Load the word stored in a
named memory location into a
register. Variable is a label
that the programmer has
attached to a memory location.
12 is the offset of that memory
location from the beginning of
the data segment. It is
calculated by the assembler for
you.

lw <reg> <label> lw $s0, variable
lui $at, 0x1001

lw $s0, 12($at)

Task Pseudo-Instruction Programmer Writes Assembler Translates To

Load the address of a named
memory location into a
register. Value is a label that
the programmer has attached
to a memory location. 16 is the
offset of that memory location
from the beginning of the data
segment. It is calculated by
the assembler for you.

la <dest> <label> la $s0, variable
lui $at, 0x1001

ori $s0, $at, 16

If r1 < r2, branch to label. blt <r1>, <r2>, <label> blt $t0, $t1, for exit
slt $at, $t0, $t1

bne $at, $zero, for exit

If r1 <= r2, branch to label. ble <r1>, <r2>, <label> ble $t0, $t1, for exit
slt $at, $t1, $t0

beq $at, $zero, for exit

If r1 > r2, branch to label. bgt <r1>, <r2>, <label> bgt $t0, $t1, for exit
slt $at, $t1, $t0

bne $at, $zero, for exit

If r1 >= r2, branch to label. bge <r1>, <r2>, <label> bge $t0, $t1, for exit
slt $at, $t0, $t1

beq $at, $zero, for exit

