NNNNNNNNNNNNNNNNNNNNNNNN
EEEEEEEEEEEEEEEEEEEE

CSE610: Web Programming &

Security
10. SSL/TLS & HTTPS

Seongil Wi

Department of Computer Science and Engineering

Midterm Exam .

* April. 18 (Thursday)
* Class Time (1h 15m)

 Descriptive type questions
» Closed book

HW1 Due Date g

.3
* Due date (writeup report): 4/9 (Tue), 11:59PM

Today's Topic

* Network attacker: resides somewhere in the
communication link between client and server

—Passive: evasdropping
— Active: modification of messages, replay...

 Remote attacker: can connect to remote system via
the network

—Mostly targets the server

« Web attacker: controls attacker.com
—Can obtain SSL/TLS certificates for attacker.com
—Users can visit attacker.com

Protocol g

3

A system of digital rules for data exchange between computers
red protocols

* Many laye
m
/ \
‘ request 4

Used protocol
Application HTTP
Presentation| +— A'

HTTP

Session TCP. . HTTP
header request TGP
Transport
I P TCP HTTP
Network header header request

Data Link AMeE = = D .
Physical

Ethernet

Protocol
3

A system of digital rules for data exchange between computers
* Many layered protocols

HTTP B /WM)
g/ |

eoues

@ Frame IP TCP HTTP [Frame @
header header header request|footer

Network Attackers ;

3

A system of digital rules for data exchange between computers

* Many layered protocols

-

(

(x=)

How do we mitigate attacks . Snipping
from network attackers? * Modification of messages

@ Frame IP TCP HTTP [Frame @
header header header request|footer

Motivation: Cryptog raphjecal Protocol g

A system of digital rules for data exchange between computers
« Many layered protocols

'y R

(=

—
We need some Snipping
Cryptog raphic pl’OtOCOl Modlflcatlon of messages

@ Frame IP TCP HTTP [Frame @
header header header request|footer

SSL/TLS U

What is SSL/TLS?

» Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols

— Same protocol design, different crypto algorithms
— (Reserved) port number: 443

« Security goals: achieving...
— Confidentiality
— Integrity
— Authentication

* De facto standard for Internet security

SSL/TLS Basic Idea . ;

» Adding a protocol layer for secure communication!

‘ Used protocol
HTTP
= HTTP

Application T
Presentation { header B SSL/TLS

Session

Transport

Performs encryption on the data
received from the application layer

Network
Data Link
Physical

SSL/TLS Basic Idea . ;

» Adding a protocol layer for secure communication!

HTTPS Protocol =

‘ HTTP + SSL/TLS Used protocol

HTTP

e

Application

Presentation

Session

Transport

Performs encryption on the data
received from the application layer

Network
Data Link
Physical

SSL/TLS Basic Idea

» Adding a protocol layer for secure communication!

g/

Application

: HTTP
Reuest

Presentation

Session

Transport

Network

TCP

‘|header

SSUTCS e
headerﬁﬁﬁ'~

Data Link

P
header

TCP
header

Physical

Frame

header

P
header

TCP
header

header jé:sjé:zjs:z}:zj' ta

SSL/TLS] _;
header |

| footer | L

Used protocol

TCP

IP

Ethernet

SSL/TLS Basic Idea

» Adding a protocol layer for secure communication!

g/

@ Frame| IP [TCP EEMIIFEEncrypted Frame
headerlheaderlheader = =8 idata::| footer

Use Cases
%

* Email
* Vice over IP (VolIP)
« Payment systems (transactions)

- HTTPS

— The most publicly visible use case!
— Deployed in every web browser

History of the Protocol . %

. SSL 1.0 — internal . SSL 3.0 —Netscapeand ' TLS 1.1 ' TLS 1.3

' Netscape design ' Paul Kocher ! :

E * Lost in the mists of time E E i

— . @ * 3 * = B

i : TLS 1.0 — Internet :
| . standard i
: \ + Based on SSL 3.0, but not :
! SSL 2.0 — Netscape ! in?:s)pgpable (uses dLijffggent !
1« Several weaknesses ! cryptographic algorithms) w TLS 1.2

) Nov. 1994) Jan. 1999 ®) Aug; 2008

SSL/TLS Basics

* Runs in the presentation layer
» Uses symmetric crypto, asymmetric crypto, and digital

signhatures
« Composed of two layers of protocols: Application Layer
1. Handshake protocol
2. Record protocol Handshake Protocol

SSL/TLS

Record Protocol

Transport Layer

SSL/TLS Basics

\V %

Handshake Protocol

SSL/TLS Handshake Protgcol

* The most complex part of SSL

« Uses asymmetric cryptography (public-key cryptography) to
establish several shared secret

Ref: Asymmetric Key Cry£tography

« Each party has two distinct keys: public key and private key

— Also known as public-key algorithm

public key private key

Ref: Asymmetric Key Cry£tography ;

« Each party has two distinct keys: public key and private key
— Also known as public-key algorithm

e f\é

Alice ¢ Bob’s Bob’s
‘ ,’public key private key
Malwenn ,

‘_/' Publicly available

Jooyoung Jang

Ref: Asymmetric Key Cry£tography ;

« Each party has two distinct keys: public key and private key
— Also known as public-key algorithm

e f\é

Alice ¢ Bob’s Bob's
,’public key private key
£
‘_/ /
.. /
Malwenn ,

Only Bob should
have this key

‘_/' Publicly available

Jooyoung Jang

Ref: Asymmetric Key Cryptography

« Each party has two distinct keys: public key and private key
— Also known as public-key algorithm

g 7 2\

Alice Bob's Bob's
public key private key
|

Plaintext m Decryption Plaintext

Ciphertext

Four Phases of Handshake Protocol

htts://searc.

Client

Phase 1:
Establishing security capabilities

Phase 2:
Server authentication and key exchange

Phase 3:
Client authentication and key exchange

Phase 4:

Finalizing the handshake protocol

Server

https://search/

Phase 1: Establishing Security Capabilities

https://search... o —
Client - g —m—— Server

Phase 1:

Establishing security capabilities

https://search/

Phase 1: Establishing Security Capabilities

htts://searc.

Client - 8 Sty SerVEr
Generate random #

Client random 3 (will be used later for key
generation)

https://search/

Phase 1: Establishing Security Capabilities

o —
Client - 8 e Server
Client random # Cllent Hello

Version

Client random number
Session ID

Cipher suite
Compression methods

https://search/

Phase 1 — Client Hello — Details

* Version
— Highest protocol version supported by the client

* Client random number
— Random 32 bit time stamp + 28 random bytes
— It will be used later for key generation

« Session ID

— 0: establish new connection on new session
— Non-zero; resume an old session

« Cipher suite

— Set of cryptographic algorithms supported by
the client

« Compression methods
— Sequence of compression methods

Cipher Suites

* Version
— Highest protocol version supported by the client
* Client random number Format:
- Random 32 bit time stamp + 28 random bytes TLS_RSA_WITH_AES_128_CBC_SHA

— It will be used later for key generation

« Session ID

— 0: establish new connection on new session
— Non-zero; resume an old session

« Cipher suite

— Set of cryptographic algorithms supported by
the client

« Compression methods
— Sequence of compression methods

Cipher Suites ;

%3
Client Hello — Details
* Version
— Highest protocol version supported by the client
. Client random number Format:

TLS_RSA_WITH_AES_128_CBC_SHA

— Random 32 bit time stamp +E=I7etreele|
— It will be used later for key ge

- Session ID (Asymmetric)
Bl Encryption/decryption algorithm

UNRSOAE (61 handshake protocol
« Cipher suite /

— Set of cryptographic algorithms supported by
the client

« Compression methods
— Sequence of compression methods

Recap: Asymmetric Key Cryptography

« Each party has two distinct keys: public key and private key
— Also known as public-key algorithm

g 7 2\

Alice Bob's Bob's
public key private key
|

Plaintext m Decryption Plaintext

Ciphertext

Ref: RSA Algorithm

[c = E(m,pk) = m® modn

m = 10

MNl—>

g/

Alice

E _ﬁ
Ciphertext
é@Bob’s
public key (pk)
e =25
n =91

Insecure channel

D

m = D(c, sk) = c? modn]
c = 82 m =10

_)@

Bob’s private

key (sk)
d =29
n =91

-

Bob

Cipher Suites ;

%3
Client Hello — Details
* Version
— Highest protocol version supported by the client
. Client random number Format:

TLS_RSA_WITH_AES_128_CBC_SHA

- Random 32 bit time stamp +E=ITeteTere| I
— It will be used later for key ge

- Session ID (Asymmetric)
e Encryption/decryption algorithm

UM (for handshake protocol
« Cipher suite /

— Set of cryptographic algorithrg :
the client (Symmetric)

T rreeeneeall ENCryption/decryption algorithm
- Sequence of compression mé (for record protocol)

Ref: Symmetric Key Cryp;ography ;

* The same key is used to encrypt/decrypt messages
— Also known as secret key algorithm

g 7

Alice key

Shared secret key

Ref: Symmetric Key Cryptography

* The same key is used to encrypt/decrypt messages
— Also known as secret key algorithm

‘__/ _____________

Alice

<]

Plaintext

Ciphertext

Ref: Advanced Encryptio;g Standard (AES)

Inputs
Plaintext (16 Bytes = 128 bits) Master Key (16 Bytes) Ciphertext (16 Bytes)
[I N
. [BN BN]
Key O Key 1 Key 10
Byte matrix
SubBytes Sub Sub

ShiftRows é Shift Shift
1 —— oo o0 —p

MixColumns Mix

Round 1 Round 2 Round 10

Cipher Suites ;

%3
Client Hello — Details
* Version
— Highest protocol version supported by the client
. Client random number Format:

TLS_RSA_WITH_AES_128_CBC_SHA

- Random 32 bit time stamp +E=ITeteTere| I
— It will be used later for key ge

- Session ID (Asymmetric)
e Encryption/decryption algorithm

_lNon-zero' r¢ (for key exchange)
« Cipher suite /

— Set of cryptographic algorithrg :
the client (Symmetric)

el ENCryption/decryption algorithm
— Sequence of compression mé (for data exchange)

Cipher Suite — Example

3

Cipher Suite Key Exchange Cipher MAC)

No protection
[TLS_NULL_WITH_NULL_NULL NULL NULL NULL
TLS _RSA WITH NULL MD5 RSA NULL MD5
TLS RSA WITH NULL_ SHA RSA NULL SHA
TLS RSA WITH NULL SHA256 RSA NULL SHA256
TLS RSA WITH RC4 128 MD5 RSA RC4 128 MD5 e
TLS RSA WITH RC4 128 SHA RSA RC4 128 SHA Uses RSA (certificate) fqr
TLS RSA WITH 3DES EDE_CBC SHA RSA 3DES_EDE_CBC SHA key exchange, AES 256 in
TLS RSA WITH AES 128 CBC SHA RSA AES 128 CBC SHA CBC mode for encryption
[TLS_RSA_WITH_AES_256_CBC_SHA RSA AES_256_CBC _SHA and SHA256 as MAC
TLS _RSA WITH AES 128 CBC SHAZG6 RSA AES 128 _CBC SHAZSG6
TLS RSA WITH AES 256 CBC SHA256 RSA AES 256 CBC SHA256
TLS DH anon WITH RC4 128 MD5 DH anon RC4 128 MD5
TLS DH anon WITH 3DES EDE CBC SHA DH_anon 3DES EDE CBC SHA
TLS DH DSS WITH AES 128 CBC SHA DH_DSS AES 128 CBC SHA
TLS DH RSA WITH AES 128 CBC_ SHA DH_RSA AES 128 CBC SHA
TLS DHE DSS WITH AES 128 CBC SHA DHE_DSS AES_128_CBC SHA Uses ephemeral lefle_ He”man
TLS DHE RSA WITH AES 128 CBC_ SHA DHE_RSA AES 128 CBC SHA .
TLS DH anon WITH AES 128 CBC_SHA DH anon ERPTRs EE\ Wwith RSAfor key exchange,
TLS DH DSS_WITH AES 256 CBC SHA DH_DSS AES 256 CBC SHAEN=NIIONOI=10% (o]l =TalegY o] o]
TLS DH RSA WITH AES 256 CBC_ SHA DH_RSA AES 256 CBC SHA and SHA256 as MAC
TLS DHE DSS WITH AES 256 CBC_SHA DHE DSS AES 256 CBC SHA
[TLS_DHE_RSA WITH AES 256 _CBC_SHA DHE_RSA AES_256_CBC _SHA
TLS DH anon WITH AES 256 CBC_ SHA DH anon AES 256 CBC SHA

Cipher Suit

Client Hello —

Version
— Highest protocol version

Client random number

8 |n decreasing order

Se of preference
— (: establish new cC

— Non-zero: resume an old

Cipher suite

— Set of cryptographic algor
the client

Compression methods
- Sequence of compressio

v Transport Layer Securit
v TLSv1.2 Record Layer: Handshake Protocol: Client Hello

Content Type: Handshake (22)

Version: TLS 1.0 (0x0301)

Length: 512

Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher
Cipher

v Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)
Length: 508
Version: TLS 1.2 (0x0303)

Random: 1396873af8d56dbo7f55a31atba6c98a04e00025005764fe..

Session ID Length: 32

Session ID: fe329526917d48c5af72228bdcb801142894fe91f4a548f7...

Cipher Suites Length: 34

v Cipher Suites (17 suites)

Suite:

Suite:

Suite:

Suite:

Suite:

Suite:

Suite:

Suite:

Suite:

Suite:

Reserved (GREASE) (©x3a3a)

TLS AES 128 GCM SHA256 (0x1301)

TLS AES 256 GCM SHA384 (0x1302)

TLS CHACHA20 POLY1305 SHA256 (0x1303)

TLS ECDHE_ECDSA WITH AES 128 GCM SHA256 (0xc02b)
TLS ECDHE _RSA WITH AES 128 GCM SHA256 (0xce2f)
TLS ECDHE_ECDSA WITH AES 256 GCM SHA384 (0xc02c)
TLS ECDHE _RSA WITH AES 256 GCM SHA384 (0xc030)
TLS ECDHE_ECDSA WITH CHACHA20 POLY1305 SHA256 (@xcca9)
TLS ECDHE RSA WITH CHACHA20 POLY1305 SHA256 (©xcca8

Phase 1: Establishing Security Capabilities

htts://searc.

o —
Client 8 Sty SerVEr
Client random # Cllent Hello Client random #

Version

Client random number
Session ID

Cipher suite
Compression methods

https://search/

Phase 1: Establishing Security Capabilities

o —
Client - 8 = Server
Client random # Cllent Hello Client random #

Version Server random #

Client random number
Session ID
Cipher suite

Compression methods Generate random #
(will be used later for key

generation)

https://search/

Phase 1: Establishing Security Capabilities

https://search... o —
Client - g —m—— Server

Client random # Client Hello Client random #
Version Server random #

Client random number
Session ID

Cipher suite
Compression methods

Server Hello

Version

Server random number
Session ID

Selected cipher set

Selected compression methods

https://search/

Phase 1: Establishing Sec#rity Capabilities

o —
Client g i Server
Client random # Client Hello Client random #
Server random # Y - Server random #

Client random number Same as Client Hello
Session ID

Cipher suite but confirmation
Compression methods

Server Hello
Version

Server random number

Session ID

Selected cipher set
Selected compression methods

https://search/

N
Phase 1 — Server Hello — Details

Client Hello — Details

 Version

— Highest protocol version supported by the client

* Client random number
— Random 32 bit time stamp + 28 random bytes
— It will be used later for key generation

« Session ID

— 0: establish new connection on new session
— Non-zero; resume an old session

« Cipher suite

— Set of cryptographic algorithms supported by
the client

« Compression methods
— Sequence of compression methods

Server Hello — Details

* Version
— Highest common version

« Server random number
— Random 32 bit time stamp + 28 random bytes
— It will be used later for key generation

« Session ID

— New session ID if zero, old session ID
otherwise

« Cipher suite
— The selected cipher suite

« Compression methods
— The selected compression technique

v TLSv1.2 Record Layer: Handshake Protocol: Server Hello

Content Type: Handshake (22
Version: TLS 1.2 (0x0303) _ _
Length: 78 Selected cipher suite
v Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)
Length: 74
Version: TLS 1.2 (0x0303)
Random: 3896a769b30ae8f9cdodcd3ebld58aadd7al2e2c5caf@fA7b...

s O) oNeTh: ¢

mber
stamp + 28 random bytes
'or key generation

Cipher Suite: TLS ECDHE RSA WITH AES 128 GCM SHA256 (@xc02f)
Compression Method: nu 0

Extensions Length: 34

Extension: renegotiation info (len=1)

Extension: server name (len=0) suite
Extension: ec point formats (len=4)

Extension: session ticket (len=0)

Extension: application layer protocol negotiation (len=5)
Extension: extended master secret (len=0)

2ro, old session ID

1ods
ession technique

Phase 1: Establishing Security Capabilities

https://search... o —

Client - g _=m Server

Client random # : Client random #
Server random # Phase 1: Server random #

Establishing security capabilities

After Phase 1, the client and server know the followings:
* The version of SSL/TLS

* The algorithms for key exchange and encryption
 The compression method

* The two random numbers for key generation

https://search/

Phase 2: Server Auth. and Key Exchange

https://search... o —

Client - g _=m Server

Client random # Client random #
Phase 1:

Server random # . _ . Server random #
Establishing security capabilities

Phase 2:
Server authentication and key exchange

https://search/

Phase 2: Server Auth. and Key Exchange

https://search... o —

Client - g _=m Server

Client random # Certificate Client random #
Server random # Chain of certificates gJperver random #

Server’s Digital
Certificate

Q4

CAs Server’s
sign public kef/f

Client verifies that server
provided a valid certificate

https://search/

Motivational Question

e

private key

How does Alice know that the public key

she received is really Bob’s public key?

Digital Certificate .

* A document certifying that the public key included inside does
belong to the identity described in the document

Digital Signature

& 7 4\

Alice Bob's Bob's Bob
public key private key

Sign

. Plaintext
encryption

Ciphertext

Digital Signature ;

This message is from Bob
(authentication)

4\

_Bob% Bob
private key

Sign

‘ encryption

Jooyoung Jang Ciphertext

Plaintext

Digital Certificate

v Subject: Server

Digital Certificate

v Expires: 11/25/2034

v Bob’s public key:
Certificate ADFECDBBF... ,

Authority (CA)

Encrypt with

101 010..
CA's private key 9101000

Trusted 3rd-party authority
(KISA, yesSign, Verisign ...)

Digital Certificate

v Subject: Server
v Expires: 11/25/203f

v Bob’s public kef.
Certificate ADFECDBBF...

Authority (CA)

Append

Encrypt with 9101000010
CA's private key N

Hash-based Digital Signa;\‘;cure ;

Verification
Digital Certificate @

v Subject: Server NW

v Expires: 11/25/2034

v' Bob’s public key: f
ADFECDBBEF... ,

Hash-based Digital Signa;\‘;cure ;

Digital Certificate

v Subject: Server
v Expires: 11/25/2034
v Bob’s public key:
ADFECDBBEF...

Decrypt with # 0101000010. =— 0101000010
@ ‘ CA’s public key - o
CA's sign Authentication: Confirm

Server’s public key

X.509 Certificate ;

3

Version ¢ ¢ ¢ T m
Serial Number == T
Signature Algorithm Identifier - oC % -
S H 3 1
Issuer Name |~ Ok 0957543z
v 5 = MY Y025 SHAL + RSA
> = M2 2125
vaildity Period - o == cn=yessignCa, ou=Accredited,.,
oy — = ags -[5- oo:
SUbjeCt Name > S CHS5H -.Cw’-:?:?." 2009-05-19 00:00:00
I CHEIEN =& 2010-05-25 23:59:59
Public Key Information v = cn=" _)0020045200605177.., —
v ZHI| LD2S RSA
[ssuer Unique ID =7 3081890261810080270c 78bbe9l, .,
A3 07c8512b0cdb15f4bB576dddae, ..
Subject Unique ID T5H% Jalbbd3s2dobb1d15c0d60meld, .
v S E=TE-FVI L 12410 200005 1 1 4 v
Extensions + l

Recursive Concern g

.3

Recursive concern:
How can we trust that the

public key belongs to CA?

Decrypt with
CA's public key

Chain of Trust

Root CA’s Digital
Certificate

©,

NW
Self Root CA’s

sign public keyl/

Root CA

Embedded in

Sub CA'’s Digital
Certificate

OS or web browsers

Q4

Root CA's Sub CA’s

Chain of Trust

Root CA’s Digital
Certificate

©,

NW
Self Root CA’s

sign public keyl/

h Root CA

Sub CA’s Digital Embedded in
Certificate
OS or web browsers

Sub CA 1 z Signed with
| root CA’s private key

Chain of Trust

Root CA’s Digital

Certificate
| want to verify that this public @ f

key belongs to server!

Self Root CA
sign public

Sub CA’s Digital
Certificate

@ Embedded in
sign public kif OS or web browsers

Server’s Digital
Certificate

Browsers are Pre-configured with 100+ Trusted CA

3

'} Certificate Manager *, » - @@&

Your Certificates | People | Servers | Authorities | Others |

You have certificates on file that identify these certificate authorities:

a

Certificate Name Security Device

»TDC A
b TDC Internet

P Thawte

> Thawte Consulting

I Thawte Consulting cc

b thawte, Inc.

b The Go Daddy Group, Inc.

p» The USERTRUST Network

b TURKTRUST Bilgi Iletisim ve Biligim Gavenligi Hizmetleri A.S. ...
P Unizeto Sp. z o.0.

b ValiCert, Inc.

VeriSign, Inc.
b VISA

N > Wells Fargo
> Wells Fargo WellsSecure
| b XRamp Security Services Inc

NN

1

View...] [Edit...] [Import...] [Export...] [Delete...]

Phase 2: Server Auth. anac‘:le Key Exchange

https://search... o —

Client - g Sty SerVEr

Client random # Certificate Client random #
Server random # Chain of certificates server random #

Server’s Dlgltal @& https://www.google.com
Certificate

| & Security X
n- google.com

CA’s Server’s @ Connection is secure

sign_public kejf 78l B e
to this site. Learn more
Client Verifies that Server B Certificate is valid

provided a valid certificate

https://search/

Phase 2: Server Auth. anac‘:le Key Exchange ;

https://search... o —
Client - g i Server

Client random # Certificate Client random #
Server random # Chain of certificates gperver random #

Server’s Server’s
public key private key

(Optional) Client Certificate Request
» List of acceptable certificates

» List of acceptable authorities

When the server requires a digital

certificate to authenticate the client

https://search/

Phase 2: Server Auth. ang Key Exchange

https://search... o —

Client - g Sty SerVEr

Client random # Certificate Client random #
Server random # Chain of certificates gJperver random #

Server’s Server’s
public key private key
» List of acceptable certificates

« List of acceptable authol “Pm done and [l
wait on response”

(Optional) Client Certificate Request

Server Hello
No contents

https://search/

Phase 1: Establishing Security Capabilities

o —
O -

Phase 1:
Establishing security capabilities

Phase 2:
Server authentication and key exchange

After Phase 2,
« The server is authenticated to the client
* The client knows the public key of the server

Server

https://search/

Phase 3: Client Auth. and Key Exchange

htts://searc.

Client

Phase 1:
Establishing security capabilities

Phase 2:

Server authentication and key exchange

Phase 3:

Client authentication and key exchange

Server

https://search/

Phase 3: Client Auth. and Kev Exchange g

Client

Client random #
Server random #

Server’s
public key

https://search...

Optional) Certificate
Chain of certificates

Server

Client random #
Server random #

Server’s
private key

https://search/

Phase 3: Client Auth. anc;l‘E Key Exchange g

https://search... o —

Client - g Sty SerVEr

Client random # Optional Certificate Client random #
Server random # Server random #

N 1 Chain of certificates |
Server’s Server’s
public key p

rivate key
Pre-master secret

The client generates a random
number, called a pre-master secret
used later for key generation

https://search/

Phase 3: Client Auth. anc;l‘e Key Exchange

https://search...

Client random #
Server random 4

Server’s
public ke

Pre-master secret

Optional) Certificate
Chain of certificates

 DEncrypt!

Client Key Exchange
2 Encrypted pre-master secret

Server

Client random #
Server random #

Server’s
private key

https://search/

Phase 3: Client Auth. angl‘e Key Exchange

https://search... o —
Client g b Server

Client random #
Server random #

Server’s
private key

Pre-master secret

Client random #
Server random 4

Server’s
public ke

Pre-master secret

Optional) Certificate
Chain of certificates

 DEncrypt!

Client Key Exchan
Encrypted pre-master secret

https://search/

Phase 3: Client Auth. anc;l‘e Key Exchange ;

https://search... o —
Client g i Server

Client random #
Server random #

Server’s
private key

acret

Client random #
Server random #

Server’s 1
public key

Pre-master secret

Optional) Certificate
Chain of certificates

Client Key Exchan
Encrypted pre-master secr:

Provide explicit verification
of client certificate

Optional) Certificate Verif
Signature to prove certificate

https://search/

Phase 3: Client Auth. and Key Exchange

https://search... o —

Client - g _=m Server

Client random # Client random #

Server random # . Phase_1 : . Server random #
Server's Establishing security capabilities Server's
public key private key

Phase 2:
Server authentication and key exchange Pre-master secret

Pre-master secret

Phase 3:
Client authentication and key exchange

After Phase 3,
* (Optional) The client is authenticated for the server
« Both the client and the server know the pre-master secret

https://search/

Phase 3: Client Auth. and Key Exchange

o —
Client - O - Server
O -
Client random # Client random #

Server random # Server random #

f "l Before move on Phase 4, jg
= | let’s make symmetric key i

Why do we need a symmetric key
even though we already have asymmetric key?

Server’s
rivate key

Pre-master secret
Pre-master secret

https://search/

Pros & Cons: Asymmetrii-key Cryptography

* Pros
— No need to share a secret

— Enable multiple senders to communicate privately with a single
receiver

— More applications: Digital sign

e Cons

— Slower in general: due to the larger key
» Roughly 2-3 orders of magnitude slower

Solution: Combination o; Two Schemes ;

Share a symmetric key

‘ f with RSA algorithm

public key (pk) private key (sk)
| |
Symmetric Encryption Decryption Symmetric

key key

Solution: Combination OLTWO Schemes %

-

Alice

Symmetric
key

Communication
with the symmetric key

Symmetric
key

Phase 3: Client Auth. and Key Exchange

https://search... o —
Client - g —m—— Server

Client random # Client random #
Server random # Server random #

f "l Before move on Phase 4, 2@
= | let’s make symmetric key i

Server’s
rivate key

Pre-master secret
Pre-master secret

https://search/

Calculation of Master Seac‘:eret

https://search... o —

Client random #
Server random #

Server’s : : Server’s
public key Message digest algorithm private key

Server

Client random #

Client random # § Pre-master secret f Server random # Server random #

MDS & SHA-1

Pre-master secret
Pre-master secret

Master secret

https://search/

Calculation of Symmetric* Key ;

https://search... o —

Client - g Sty SerVEr

Client random # Client random #
Server random # Server random #

Server’s Server’s
f public key Message digest algorithm f private key
MD5 & SHA-1

Client random # | Pre-master secret § Server random #

Pre-master secret
Pre-master secret

Master secret

Message digest algorithm
MDS & SHA-1

Symmetric key

https://search/

Calculation of Symmetrica:‘e Key

https://search... o —

Client - g Sty SerVEr

Client random # Client random #
Server random # Server random #

Server’s Server’s
f public key Message digest algorithm f private key
MDS5 & SHA-1

Client random # | Pre-master secret § Server random #

Pre-master secret
Pre-master secret

Symmetric key Master secret Symmetric key

Message digest algorithm
MD5 & SHA-1

Symmetric key

https://search/

Phase 3: Client Auth. and Key Exchange

https://search... o —

Client - g _=m Server

Client random # Client random #

Server random # . Phase_1 : . Server random #
Server's Establishing security capabilities Server's
public key private key

Phase 2:
Server authentication and key exchange Pre-master secret
Symmetric key

Pre-master secret

Symmetric key

Phase 3:
Client authentication and key exchange

After Phase 3,
* (Optional) The client is authenticated for the server
« Both the client and the server know the pre-master secret

https://search/

Phase 4: Finalizing the Handshake Protocol

https://search...

Client random #
Server random #

Server’s
public key
Pre-master secret

Symmetric key

Phase 1:
Establishing security capabilities

Phase 2:
Server authentication and key exchange

Phase 3:
Client authentication and key exchange

Phase 4:
Finalizing the handshake protocol

Server

Client random #
Server random #

Server’s
private key

Pre-master secret

Symmetric key

https://search/

Phase 4: Finalizing the H*aemdshake Protocol

https://search... o —

Client - g Sty SerVEr

Client random # Change Cipher Spec Client random #
Server random 1 1 Server random #

Server’s Server’s
public key private key

Pre-master secré 2
Pre-master secret

Finished
MD5 Hash + SHA Hash

Change Cipher Spec

_W3
MD5 Hash + SHA Hash gu 4

D

The client and server are ready to exchange data

Symmetric key Symmetric key

https://search/

Handshake
Protocol
Summary

Time

-

Client

Server

-l‘.,'e”o\’

Establish security capabilities,
including protocol version,
session ID, cipher suite,
compression method, and
initial random numbers.

:M

pvex Key_exchans”
30 —

- st
certificatet .

e
gerver petlo_don

Server may send certificate,
key exchange, and request
certificate. Server signals end
of hello message phase

T ""C‘the

clie
nthkey\ €¥change
Certifies fe verify

Client sends certificate if
requested, Client sends key
exchange. Client may send
certificate verification,

et

{.’(*‘ Cipbel; SPE(}
-‘;njs’,ed\’

Change cipher suite and fimish
handshake protocol,

SSL/TLS Basics

\V %

Handshake Protocol

SSL/TLS Basics

Handshake Protocol

Record Protocol

SSL Record Protocol Ope*[ation g

Application Data

SSL Record Protocol Ope*[ation g

Application Data

21 N
’ 1 1 N
’ 1 | N\

Fragment

SSL Record Protocol Ope*[ation

Application Data

P e
’ 1 | N
’ . . N

Fragment

—
Compress /7% Optional step!

SSL Record Protocol Ope*[ation

Application Data

Fragment

Compress /////// Optional step!
77

Add MAC \

MAC: Check both

. : .. Client | Server [Client|Server
iIntegrity and authenticity auth. key| auth. keyJenc. key fenc. key| IV | IV

Symmetric Key f

Ref: Message Authentica*teion Codes (MAE

Use the symmetric key!

X,
. 4
I
4

g —h

Alice Insecure channel Bob

Ref: Message Authentica*teion Codes (MAC)

/
<0l)
¥ L7
mac(x) L_m_acix);
‘;/ \4

Alice Insecure channel Bob

Ref: Message Authentication Codes (MAC)

/

S .
> ¥p Bl
\ AN] Y A i

mac(x) !rm_ClCLX)J I_ —_———
g/ X

Alice Insecure channel Bob

Ref: Message Authentication Codes (MAC)

2ol 5]

MAC | | | |

s :: ::
|

mac(x) | mac(x) |

+ | | L 4 <+ | | _.
.

. :

-

. 0 - QY
(S g . Q

Alice Insecure channel Bob

Ref: Message Authentica*teion Codes (MAE

X Check both integrity
7 and authenticity
¥
| |
el i]!
¥ | /|

mac(x) | mac(x) |

+ | | L 4

* ¥
* 4
* 4
‘@.

Alice Insecure channel

SSL Record Protocol Ope*[ation g

Application Data

Fragment

SARMAC W////{////

aYa YV VL Y V VNV VNV VNV VYV V.V .V .V V. V. "
0”’0”’0”’0‘.’..0‘0."0.0"” 0” 4

QXIICIRIIHIRIHIRXIRKHIRNRS
Encr Yy pt 0002000000000 %020 %620 %% %0 e e 20 2020
S 0000600060000 X 000‘ 0000000

0. 0.0.0.0.0.9.0.4.0.0.0
020000000 %% %0 %00 %% %% %% % %

auth. key| auth. key | enc. key | enc. ke I\ \Y

Symmetric Key f

[o
A
[ClientHello
[ClientKeyExchange |
ChangeCipherSpec
Finished
r Application Data j

SSL/TLS Final Overview

Sender

3

Receiver

=
SYN ACK o
\ y (@)Y
3
ServerHello 1)
Certificate —
| ServerHelloDone | >gf*
[ChangeCipherSpec | 5
Finished
168 ms /

{ Application Data]

224 ms

How SSL/TLS Provides Security Properties?

« Security goals: achieving confidentiality, integrity, and
authentication
—Confidentiality
= Asymmetric-key algorithm for key exchange (pre-master key)
= Symmetric-key algorithm for data exchange

—Integrity:
» MAC (with hash algorithm)

» |f an attacker modifies the message, the recipient can detect the
modification

—Authentication
» Authenticate the identity of the server using the server’s certificate

How SSL/TLS Provides Sae‘ecurity Propertie;.

« Security goals: achieving confidentiality, integrity, and
authentication

—Confidentiality

A an)

Are we safe now?

» MAC (with hash algorithm)
» |f an attacker modifies the message, the recipient can detect the
modification

—Authentication
» Authenticate the identity of the server using the server’s certificate

SSL/TLS Implementations :

3

* Many open-source implementations of SSL/TLS are available
for developers

Can We Believe the
SSL/TLS Implementations?

Heartbleed Bug (in 2014;)& I‘

 Famous bug in OpenSSL (in TLS heartbeat)

* An attacker can steal private keys

Heartbleed Bug: High-level Workflow

heartbeat function
to check if the server is alive

Client Server

Heartbleed Bug: High-level Workflow

Are you still there?

If so, respond with m

a 6-byte string “CSE610” m
‘ / CSE610 —_—

Client Server

Heartbleed Bug: High-level Workflow

Are you still there?
If so, respond with
a 5000-byte string “CSE610”

‘ / CSEBTOXXXXXXXXX...

Client Server

Heartbleed Bug: High-le\iel Workflow I‘

Are you still there?
If so, respond with
a 5000-byte string “CSE610”

‘ / CSEB1TOXXXXXXXXX...

Client

Server

Memory disclosure!

(leak private keys)

Frankencert, S&P'2014

 Design the first automated method for large-scale testing of
certificate validation logic in SSL/TLS implementations

Abstract—Modern network security rests on the Secure Sock-
ets Layer (SSL) and Transport Layer Security (TLS) protocols.
Distributed systems, mobile and desktop applications, embedded
devices, and all of secure Web rely on SSL/TLS for protection
against network attacks. This protection critically depends on
whether SSL/TLS clients correctly validate X.509 certificates
presented by servers during the SSL/TLS handshake protocol.

Using Frankencerts for Automated Adversarial
Testing of Certificate Validation
in SSL/TLS Implementations

Chad Brubaker * T Suman Jana! Baishakhi Ray? Sarfraz Khurshid® Vitaly Shmatikov'
*Google
"The University of Texas at Austin
iUniversity of California, Davis

many open-source implementations of SSL/TLS are available
for developers who need to incorporate SSL/TLS into their
software: OpenSSL, NSS, GnuTLS, CyaSSL, PolarSSL, Ma-
trixSSL, cryptlib, and several others. Several Web browsers
include their own, proprietary implementations.

In this paper, we focus on server authentication, which

SSL/TLS Objectives :

3

 To protect
—Confidentiality
—Integrity
—Authenticity

SSL/TLS Objectives

 To protect
—Confidentiality

~Integrity The focus of this
—Authenticity = certificate validation!!

= Focus on server authentication

* Protection against man-in-the-middle and other server
Impersonation attacks

Current State-of-the-Art* :

» Uses several pre-generated X.509 certificates intended for

resting. Implementation | Certificate count
NSS 64
GnuTLS 51
OpenSSL 44
PolarSSL 18
CyaSSL 9
MatrixSSL 9

Testing with a handful of valid certificates is unlikely to

uncover vulnerabillities in the certificate validation logic

...
How to generate test certificates?

 Challenge:

— X.509 certificates are structurally complex data with intricate
semantic and syntactic constraints!

* Requirements

— Should be syntactically correct, otherwise won't exercise most of the
cert validation code

— Must generate semantically bad certificates including unusual
combinations of features and extensions

— Must scale to millions of certs

Frankencert :

1. Gather a corpus of real SSL/TLS certificates by
scanning the Internet |

3

Frankencert i :

1. Gather a corpus of real SSL/TLS certificates by
scanning the Internet

2. Break them down into parts

3

Frankencert i :

1. Gather a corpus of real SSL/TLS certificates by
scanning the Internet

2. Break them down into parts

3. Generate frankencerts by mutating random
combinations of these parts

-
Collecting Seed Certificates

» Scan the internet and attempt an SSL connection to every host
listening 443

» Total 243,246 certificates

* Purpose: Use corpus of real certificates as the source of
syntactically valid certificate parts

Generating Frankencerts*

« Generate a certificate by choosing parts randomly from seeds.
— Assembles parts into random combinations

keyUsage keyUsage
extension from extension from
cert3 cert2
f;/oer:sclec;; ExtendedkeyUsage

extension from cert4

How to interpret
frankencert test results?

Differential Testing!

Testing SSL/TLS Implementations

* Differential testing of SSL/TLS implementations

Assumption: Multiple
Implementations

. should have the
ope same validation logic
[Input > GnuTLS Comparison

| MatrixSSL

Testing SSL/TLS Implementations

* Differential testing of SSL/TLS implementations

openSSL

[Input i

GnuTLS

MatrixSSL

Comparison

Accept? or Rejected?

Testing SSL/TLS Implemintations :

» Differential testing of SSL/TLS implementations

Comparison

Testing SSL/TLS Implementations

* Differential testing of SSL/TLS implementations

* Target:

— SSL/TLS libraries: OpenSSL, PolarSSL, GnuTLS, CyaSSL, matrixSSL,
NSS...

—Web browsers: FireFox, Opera, Chrome

« 208 discrepancies are found by testing 8,127,600 frankencerts

Case Study: MatrixSSL . ;

* Incorrect checking whether version 1 intermediate certificate
in the chain belongs to a valid CA

Just skip checking

/* Certificate authority constraint only available 1 for version 1 Or2
version 3 certs x/ r

if ((ic—->version > 1) && (ic—>extensions.bc.ca<= 0))

psTraceCrypto ("Issuer does not have basicConstraint
CA permissions\n");

sc—>authStatus = PS _CERT _AUTH FAIL BC;

return PS_CERT_AUTH_FAIL_BC;

Man-in-the-middle attacks: Any server certified by the same root

can act as rogue CA and issue fake certificates for other domains

Review
%

« “Blind” nature of frankencert makes it cost-ineffective:
testing an enormous number of frankencerts are very resource-
intensive, but most of the frankencerts do not trigger any
discrepancies

» By adding existing pre-generated test suite as corpus, the
generated certificate will be more diverse and meaningful in
terms of testing

HTTPS U

HTTPS "

3

» Adding a protocol layer for secure communication!

HTTPS Protocol =

‘ HTTP + SSL/TLS Used protocol

HTTP

_HTTP
| SSL/TLS

Application

Presentation

Session

Transport

Network
Data Link
Physical

HTTPS - The Lock Icon

& C @& https://www.google.com G QA M % W

» Goal: the client (Human) can identify secure connection
- SSL/TLS is being used to protect against active network attacker

 Lock icon should only be show when the page is secure against
network attacker
— All elements on the page fetched using HTTPS
— Contents of the page have not been viewed or modified by an attacker

- HTTPS certificate is valid — “This webpage is really comes from
google.com server!”

HTTPS — The Lock Icon . E

& C @& https://www.google.com G QA M % N

« Goal: the client (Human) can identify s What happens if page

— SSL/TLS is being used to protect against served oyer HTTPS but
contains HTTP?

 Lock icon should only be show when the C IS secure against
network attacker
— All elements on the page fetched using HTTPS
— Contents of the page have not been viewed or modified by an attacker

— HTTPS certificate is valid — “This webpage is really comes from
google.com server!”

Mixed Content: Combinng HTTPS and H ;; P

* Page served over HTTPS but contains HTTP
~IE 7: no lock, warning [P R —]

I 9) This page has an unspecified potential security flaw.
'-ﬁ Would you like to continue?

Yes | No

— Firefox: “I" over lock, no warning by default

— Safari: does not detect mixed content
— Chrome: lock icon, warning

® O ® /[JROHKR x
— C | @& 9Xg& https://jroh.kr G & £
i 9 [DevonThink [F https://digitalscept.. @ Snapdrop [Technologies of HOIXI7} OIBEIN 48 AAMM ASHER B3 H

2C3l2{T AlE 5D YBLICh
QIEIBHR| §2 ATYE 2E

XtA| 5| ote7|

@ JROH.KR ¢ Atgxtgost?l Clo CJM2a2b | .

«

Mixed Content and Network Attacks

&l https://bank.com/attack.html

<script
src=‘http://site.com/script.js’>
</script>

https://websec-lab.com/cse467.html

Mixed Content and Netvy&ork Attacks

&l https://bank.com/attack.html

<script
src=‘http://site.com/script.js’>
</script>

Developer mistake

https://websec-lab.com/cse467.html

Mixed Content and Netvykork Attacks

&l https://bank.com/attack.html

<script
src=‘http://site.com/script.js’>
</script>

site.com
web server

Developer mistake

https://websec-lab.com/cse467.html

Mixed Content and Netvy‘eork Attacks

&l https://bank.com/attack.html

<script
src=‘http://site.com/script.js’>
</script>

Developer mistake

Network attacker can now
inject any JS code

site.com
web server

https://websec-lab.com/cse467.html

Mixed Content and Netvg‘eork Attacks ;

&l https://bank.com/attack.html

<script
src=°‘//site.com/script.js’>
</script>

site.com
web server

Better way to include content —
AR Served over the same protocol
\& as embedding page

https://websec-lab.com/cse467.html

HTTPS - Upgrade

« Come to site over HTTP (Port no. 80), redirect to HTTPS (Port
no. 443)!

2] HTTP

Il
7
7
r

H

@T% < > < >

Apache configuration

I<V1rtualHost *:80> :
| ServerName [Domain] |
| Redirect permanent / https://[Domain]/ |
|</V1rtualHost> |

Forcing HTTPs: HTTP Strict Transport Sectrity

« HTTP header (Strict-Transport-Security) send by server

— Only valid if sent via HTTPS

—Strict-Transport-Security: max-age=<expiry in seconds>
* includeSubDomains: header is valid for all subdomains
* preload: allows for inclusion in preload list

— Ensures that site cannot be loaded via HT TP until expiry is reached

.
Summary

« SSL/TLS protocol

— Satisfy confidentiality
— Satisfy integrity
— Satisfy authentication

« HTTPS: HTTP + SSL/TLS protocol

Question?

