
10. SSL/TLS & HTTPS

Seongil Wi

Department of Computer Science and Engineering

CSE610: Web Programming &
Security

Midterm Exam

• April. 18 (Thursday)
• Class Time (1h 15m)

• Descriptive type questions
• Closed book

2

HW1 Due Date
• Due date (writeup report): 4/9 (Tue), 11:59PM

3

Today’s Topic
• Network attacker: resides somewhere in the

communication link between client and server
−Passive: evasdropping
−Active: modification of messages, replay…

• Remote attacker: can connect to remote system via
the network

−Mostly targets the server

• Web attacker: controls attacker.com
−Can obtain SSL/TLS certificates for attacker.com
−Users can visit attacker.com

4

• A system of digital rules for data exchange between computers
• Many layered protocols

5

Application
Presentation

Session
Transport
Network

Data Link
Physical

HTTP
request

TCP
header

IP
header

Frame
header

Frame
footer

HTTP
request
HTTP

request
TCP

header
HTTP

request
TCP

header
IP

header

HTTP
request

High-level idea

Used protocol

HTTP

TCP

IP

Ethernet

Protocol

Protocol

• A system of digital rules for data exchange between computers
• Many layered protocols

6

HTTP
request

High-level idea

HTTP
request

TCP
header

IP
header

Frame
header

Frame
footer

Network Attackers

• A system of digital rules for data exchange between computers
• Many layered protocols

7

HTTP
request

TCP
header

IP
header

Frame
header

Frame
footer

How do we mitigate attacks
from network attackers?

• Snipping
• Modification of messages
…

Motivation: Cryptographical Protocol

• A system of digital rules for data exchange between computers
• Many layered protocols

8

HTTP
request

TCP
header

IP
header

Frame
header

Frame
footer

We need some
cryptographic protocol

• Snipping
• Modification of messages
…

SSL/TLS

What is SSL/TLS?

• Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols

− Same protocol design, different crypto algorithms
− (Reserved) port number: 443

• Security goals: achieving…
− Confidentiality
− Integrity
− Authentication

• De facto standard for Internet security

10

SSL/TLS Basic Idea

• Adding a protocol layer for secure communication!

11

Application
Presentation

Session
Transport
Network

Data Link
Physical

Used protocol

HTTP

SSL/TLSEncrypted
data

SSL/TLS
header

HTTP
Request

Performs encryption on the data
received from the application layer

SSL/TLS Basic Idea

• Adding a protocol layer for secure communication!

12

Application
Presentation

Session
Transport
Network

Data Link
Physical

Used protocol

HTTP

SSL/TLSEncrypted
data

SSL/TLS
header

HTTP
Request

HTTPS Protocol =
HTTP + SSL/TLS

Performs encryption on the data
received from the application layer

SSL/TLS Basic Idea

• Adding a protocol layer for secure communication!

13

Application
Presentation

Session
Transport
Network

Data Link
Physical

Used protocol

HTTP

TCP

IP

EthernetEncrypted
data

SSL/TLS
header

TCP
header

IP
header

Frame
header

Frame
footer

SSL/TLS

Encrypted
data

SSL/TLS
header

TCP
header

IP
header

Encrypted
data

SSL/TLS
header

TCP
header

Encrypted
data

SSL/TLS
header

HTTP
Request

SSL/TLS Basic Idea

• Adding a protocol layer for secure communication!

14

Encrypted
data

SSL/TLS
header

TCP
header

IP
header

Frame
header

Frame
footer

Use Cases

• Email
• Vice over IP (VoIP)
• Payment systems (transactions)
• HTTPS

− The most publicly visible use case!
− Deployed in every web browser

15

History of the Protocol 16

SSL/TLS Basics

• Runs in the presentation layer
• Uses symmetric crypto, asymmetric crypto, and digital

signatures

• Composed of two layers of protocols:
1. Handshake protocol
2. Record protocol

17

Application Layer

Handshake Protocol

Record Protocol

Transport Layer

SSL/TLS

SSL/TLS Basics

• Runs in the presentation layer
• Uses symmetric crypto, asymmetric crypto, and digital

signatures

• Composed of two layers of protocols:
1. Handshake protocol
2. Record protocol

18

Application Layer

Record Protocol

Transport Layer

SSL/TLS
Handshake Protocol

SSL/TLS Handshake Protocol

• The most complex part of SSL
• Uses asymmetric cryptography (public-key cryptography) to

establish several shared secret

19

Ref: Asymmetric Key Cryptography

• Each party has two distinct keys: public key and private key
− Also known as public-key algorithm

20

BobAlice Bob’s
public key

Bob’s
private key

Ref: Asymmetric Key Cryptography

• Each party has two distinct keys: public key and private key
− Also known as public-key algorithm

21

BobAlice Bob’s
public key

Bob’s
private key

Publicly available
Jooyoung Jang

MaÏwenn

Ref: Asymmetric Key Cryptography

• Each party has two distinct keys: public key and private key
− Also known as public-key algorithm

22

BobAlice Bob’s
public key

Bob’s
private key

Publicly available Only Bob should
have this key

MaÏwenn

Jooyoung Jang

Ref: Asymmetric Key Cryptography

• Each party has two distinct keys: public key and private key
− Also known as public-key algorithm

23

BobAlice Bob’s
public key

Bob’s
private key

Encryption DecryptionPlaintext

Ciphertext

Plaintext

Four Phases of Handshake Protocol 24

https://search...

Client Server

Phase 1:
Establishing security capabilities

Phase 2:
Server authentication and key exchange

Phase 3:
Client authentication and key exchange

Phase 4:
Finalizing the handshake protocol

https://search/

Phase 1: Establishing Security Capabilities 25

https://search...

Client Server

Phase 1:
Establishing security capabilities

Phase 2:
Server authentication and key exchange

Phase 3:
Client authentication and key exchange

Phase 4:
Finalizing the handshake protocol

https://search/

Phase 1: Establishing Security Capabilities 26

https://search...

Client Server

1

Client random #
Generate random #

(will be used later for key
generation)

https://search/

Phase 1: Establishing Security Capabilities 27

https://search...

Client Server

• Version
• Client random number
• Session ID
• Cipher suite
• Compression methods

Client Hello

1

Client random #

https://search/

Phase 1 – Client Hello – Details

• Version
− Highest protocol version supported by the client

• Client random number
− Random 32 bit time stamp + 28 random bytes
− It will be used later for key generation

• Session ID
− 0: establish new connection on new session
− Non-zero: resume an old session

• Cipher suite
− Set of cryptographic algorithms supported by

the client

• Compression methods
− Sequence of compression methods

28

Client Hello – Details

Cipher Suites

• Version
− Highest protocol version supported by the client

• Client random number
− Random 32 bit time stamp + 28 random bytes
− It will be used later for key generation

• Session ID
− 0: establish new connection on new session
− Non-zero: resume an old session

• Cipher suite
− Set of cryptographic algorithms supported by

the client

• Compression methods
− Sequence of compression methods

29

Client Hello – Details

Format:
TLS_RSA_WITH_AES_128_CBC_SHA

Cipher Suites

• Version
− Highest protocol version supported by the client

• Client random number
− Random 32 bit time stamp + 28 random bytes
− It will be used later for key generation

• Session ID
− 0: establish new connection on new session
− Non-zero: resume an old session

• Cipher suite
− Set of cryptographic algorithms supported by

the client

• Compression methods
− Sequence of compression methods

30

Client Hello – Details

Format:
TLS_RSA_WITH_AES_128_CBC_SHAProtocol

(Asymmetric)
Encryption/decryption algorithm

(for handshake protocol)

Recap: Asymmetric Key Cryptography

• Each party has two distinct keys: public key and private key
− Also known as public-key algorithm

31

BobAlice Bob’s
public key

Bob’s
private key

Encryption DecryptionPlaintext

Ciphertext

Plaintext

Ref: RSA Algorithm 32

BobAlice Insecure channel

𝑑 = 29
𝑛 = 91

𝑒 = 5
𝑛 = 91

Bob’s
public key (𝑝𝑘)

𝑚 = 10

𝐸 𝐷
Ciphertext

𝑚 = 10

𝑐 = 𝐸 𝑚, 𝑝𝑘 = 𝑚! 	𝑚𝑜𝑑	𝑛
𝑐 = 82

𝑚 = 𝐷 𝑐, 𝑠𝑘 = 𝑐" 	𝑚𝑜𝑑	𝑛

Bob’s private
key (s𝑘)

Cipher Suites

• Version
− Highest protocol version supported by the client

• Client random number
− Random 32 bit time stamp + 28 random bytes
− It will be used later for key generation

• Session ID
− 0: establish new connection on new session
− Non-zero: resume an old session

• Cipher suite
− Set of cryptographic algorithms supported by

the client

• Compression methods
− Sequence of compression methods

33

Client Hello – Details

TLS_RSA_WITH_AES_128_CBC_SHA
Format:

Protocol

(Asymmetric)
Encryption/decryption algorithm

(for handshake protocol)

(Symmetric)
Encryption/decryption algorithm

(for record protocol)

Ref: Symmetric Key Cryptography

• The same key is used to encrypt/decrypt messages
− Also known as secret key algorithm

34

Shared secret key

BobAlice key

Ref: Symmetric Key Cryptography

• The same key is used to encrypt/decrypt messages
− Also known as secret key algorithm

35

BobAlice key

Encryption DecryptionPlaintext

Ciphertext

Plaintext

36

Plaintext (16 Bytes = 128 bits) Master Key (16 Bytes)

Inputs

Byte matrix

Round 1

SubBytes

ShiftRows

MixColumns

Round 2

Sub

Shift

Mix

Round 10

Sub

Shift

Ciphertext (16 Bytes)

Key 0 Key 1 Key 10

Ref: Advanced Encryption Standard (AES)

Cipher Suites

• Version
− Highest protocol version supported by the client

• Client random number
− Random 32 bit time stamp + 28 random bytes
− It will be used later for key generation

• Session ID
− 0: establish new connection on new session
− Non-zero: resume an old session

• Cipher suite
− Set of cryptographic algorithms supported by

the client

• Compression methods
− Sequence of compression methods

37

Client Hello – Details

TLS_RSA_WITH_AES_128_CBC_SHA
Format:

Protocol

(Asymmetric)
Encryption/decryption algorithm

(for key exchange)

(Symmetric)
Encryption/decryption algorithm

(for data exchange)

Cipher Suite – Example 38

No protection

Uses RSA (certificate) for
key exchange, AES 256 in
CBC mode for encryption

and SHA256 as MAC

Uses ephemeral Diffie- Hellman
with RSA for key exchange,
AES 256 CBC for encryption

and SHA256 as MAC

Cipher Suites

• Version
− Highest protocol version supported by the client

• Client random number
− Random 32 bit time stamp + 28 random bytes
− It will be used later for key generation

• Session ID
− 0: establish new connection on new session
− Non-zero: resume an old session

• Cipher suite
− Set of cryptographic algorithms supported by

the client

• Compression methods
− Sequence of compression methods

39

Client Hello – Details

In decreasing order
of preference

Phase 1: Establishing Security Capabilities 40

https://search...

Client Server

• Version
• Client random number
• Session ID
• Cipher suite
• Compression methods

Client Hello

1

Client random # Client random #

https://search/

Phase 1: Establishing Security Capabilities 41

https://search...

Client Server

• Version
• Client random number
• Session ID
• Cipher suite
• Compression methods

Client Hello

1

Client random # Client random #
Server random #

Generate random #
(will be used later for key

generation)

https://search/

Phase 1: Establishing Security Capabilities 42

https://search...

Client Server

• Version
• Client random number
• Session ID
• Cipher suite
• Compression methods

Client Hello

1

2

• Version
• Server random number
• Session ID
• Selected cipher set
• Selected compression methods

Server Hello

Client random # Client random #
Server random #

https://search/

Phase 1: Establishing Security Capabilities 43

https://search...

Client Server

• Version
• Client random number
• Session ID
• Cipher suite
• Compression methods

Client Hello

1

2

• Version
• Server random number
• Session ID
• Selected cipher set
• Selected compression methods

Server Hello

Client random #
Server random #Server random #

Client random # Client random #

Same as Client Hello
but confirmation

https://search/

Phase 1 – Server Hello – Details

• Version
− Highest protocol version supported by the client

• Client random number
− Random 32 bit time stamp + 28 random bytes
− It will be used later for key generation

• Session ID
− 0: establish new connection on new session
− Non-zero: resume an old session

• Cipher suite
− Set of cryptographic algorithms supported by

the client

• Compression methods
− Sequence of compression methods

44

Client Hello – Details
• Version

− Highest common version

• Server random number
− Random 32 bit time stamp + 28 random bytes
− It will be used later for key generation

• Session ID
− New session ID if zero, old session ID

otherwise

• Cipher suite
− The selected cipher suite

• Compression methods
− The selected compression technique

Server Hello – Details

Phase 1 – Server Hello – Details

• Version
− Highest protocol version supported by the client

• Client random number
− Random 32 bit time stamp + 28 random bytes
− It will be used later for key generation

• Session ID
− 0: establish new connection on new session
− Non-zero: resume an old session

• Cipher suite
− Set of cryptographic algorithms supported by

the client

• Compression methods
− Sequence of compression methods

45

Client Hello – Details
• Version

− Highest common version

• Server random number
− Random 32 bit time stamp + 28 random bytes
− It will be used later for key generation

• Session ID
− New session ID if zero, old session ID

otherwise

• Cipher suite
− The selected cipher suite

• Compression methods
− The selected compression technique

Server Hello – DetailsSelected cipher suite

Phase 1: Establishing Security Capabilities 46

https://search...

Client Server

Phase 1:
Establishing security capabilities

Phase 2:
Server authentication and key exchange

Phase 3:
Client authentication and key exchange

Phase 4:
Finalizing the handshake protocol

After Phase 1, the client and server know the followings:
• The version of SSL/TLS
• The algorithms for key exchange and encryption
• The compression method
• The two random numbers for key generation

Server random #Server random #
Client random # Client random #

https://search/

Phase 2: Server Auth. and Key Exchange 47

https://search...

Client Server

Phase 1:
Establishing security capabilities

Phase 2:
Server authentication and key exchange

Phase 3:
Client authentication and key exchange

Phase 4:
Finalizing the handshake protocol

Server random #Server random #
Client random # Client random #

https://search/

Phase 2: Server Auth. and Key Exchange 48

https://search...

Client Server

1Chain of certificates
Certificate

Server’s Digital
Certificate

Server’s
public key

CA’s
sign

Client verifies that server
provided a valid certificate

Server random #Server random #
Client random # Client random #

https://search/

Motivational Question 49

How does Alice know that the public key
she received is really Bob’s public key?

Digital Certificate

• A document certifying that the public key included inside does
belong to the identity described in the document

50

Digital Signature 51

BobAlice Bob’s
public key

Bob’s
private key

Sign
(encryption)

Ciphertext

Plaintext

Digital Signature 52

BobAlice Bob’s
public key

Bob’s
private key

Decryption Sign
(encryption)

Ciphertext

Plaintext

This message is from Bob
(authentication)

MaÏwenn

Jooyoung Jang

Digital Certificate 53

Digital Certificate

ü Subject: Server
ü Expires: 11/25/2034
ü Bob’s public key:

ADFECDBBF…

Hash
function

0101000010..

Certificate
Authority (CA)

Encrypt with
CA’s private key

Signing

Trusted 3rd-party authority
(KISA, yesSign, Verisign …)

Digital Certificate 54

Digital Certificate

ü Subject: Server
ü Expires: 11/25/2034
ü Bob’s public key:

ADFECDBBF…

Hash
function

0101000010..

Certificate
Authority (CA)

Encrypt with
CA’s private key

Append

Signing

55

Digital Certificate

ü Subject: Server
ü Expires: 11/25/2034
ü Bob’s public key:

ADFECDBBF…

Verification

Alice

Hash-based Digital Signature

56

Digital Certificate

ü Subject: Server
ü Expires: 11/25/2034
ü Bob’s public key:

ADFECDBBF…

Hash
function

0101000010..Decrypt with
CA’s public key

Verification

Alice

0101000010.
.

Authentication: Confirm
Server’s public key

?

Hash-based Digital Signature

CA’s sign

X.509 Certificate 57

58

Digital Certificate

ü Subject: Server
ü Expires: 11/25/2034
ü Bob’s public key:

ADFECDBBF…

Hash
function

0101000010..

Verification

Alice

0101000010.
.

Authentication: Confirm
Server’s public key

?

Recursive Concern

CA’s sign

Decrypt with
CA’s public key

Recursive concern:
How can we trust that the
public key belongs to CA?

Chain of Trust 59

Root CA

Sub CA 1 Sub CA 2 Sub CA 2

…. …. ….

Root CA’s Digital
Certificate

Root CA’s
public key

Self
sign

Sub CA’s Digital
Certificate

Root CA’s
sign

Sub CA’s
public key

Embedded in
OS or web browsers

Chain of Trust 60

Root CA

Sub CA 1 Sub CA 2 Sub CA 2

…. …. ….

Root CA’s Digital
Certificate

Root CA’s
public key

Self
sign

Sub CA’s Digital
Certificate

Sub CA’s
public key

Root CA’s
sign Signed with

root CA’s private key

Embedded in
OS or web browsers

Chain of Trust 61

Root CA’s Digital
Certificate

Root CA’s
public key

Self
signSub CA’s Digital

Certificate

Sub CA’s
public key

Root CA’s
sign

Server’s Digital
Certificate

Server’s
public key

Sub CA’s
sign

Alice

I want to verify that this public
key belongs to server!

Verify

VerifyEmbedded in
OS or web browsers

Browsers are Pre-configured with 100+ Trusted CAs62

Phase 2: Server Auth. and Key Exchange 63

https://search...

Client Server

1Chain of certificates
Certificate

Server’s Digital
Certificate

Server’s
public key

CA’s
sign

Server random #Server random #
Client random # Client random #

Client verifies that server
provided a valid certificate

https://search/

Phase 2: Server Auth. and Key Exchange 64

https://search...

Client Server

1Chain of certificates
Certificate

2• List of acceptable certificates
• List of acceptable authorities

(Optional) Client Certificate Request

When the server requires a digital
certificate to authenticate the client

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

https://search/

Phase 2: Server Auth. and Key Exchange 65

https://search...

Client Server

1Chain of certificates
Certificate

2• List of acceptable certificates
• List of acceptable authorities

(Optional) Client Certificate Request

3No contents
Server Hello Done

“I’m done and I’ll
wait on response”

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

https://search/

Phase 1: Establishing Security Capabilities 66

https://search...

Client Server

Phase 1:
Establishing security capabilities

Phase 2:
Server authentication and key exchange

Phase 3:
Client authentication and key exchange

Phase 4:
Finalizing the handshake protocol

After Phase 2,
• The server is authenticated to the client
• The client knows the public key of the server

https://search/

Phase 3: Client Auth. and Key Exchange 67

https://search...

Client Server

Phase 1:
Establishing security capabilities

Phase 2:
Server authentication and key exchange

Phase 3:
Client authentication and key exchange

Phase 4:
Finalizing the handshake protocol

https://search/

Phase 3: Client Auth. and Key Exchange 68

https://search...

Client Server

1 Chain of certificates
(Optional) Certificate

If server demands, client
sends its certificate

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

https://search/

Phase 3: Client Auth. and Key Exchange 69

https://search...

Client Server

1 Chain of certificates
(Optional) Certificate

The client generates a random
number, called a pre-master secret

(used later for key generation)

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

Pre-master secret

https://search/

Phase 3: Client Auth. and Key Exchange 70

https://search...

Client Server

1 Chain of certificates
(Optional) Certificate

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

Pre-master secret

2 Encrypted pre-master secret
Client Key Exchange

Encrypt!

https://search/

Phase 3: Client Auth. and Key Exchange 71

https://search...

Client Server

1 Chain of certificates
(Optional) Certificate

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

Pre-master secret

2 Encrypted pre-master secret
Client Key Exchange

Encrypt! Decrypt!
Pre-master secret

https://search/

Phase 3: Client Auth. and Key Exchange 72

https://search...

Client Server

1 Chain of certificates
(Optional) Certificate

2 Encrypted pre-master secret
Client Key Exchange

3 Signature to prove certificate
(Optional) Certificate Verify

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

Pre-master secret
Pre-master secret

Provide explicit verification
of client certificate

https://search/

Phase 3: Client Auth. and Key Exchange 73

https://search...

Client Server

Phase 1:
Establishing security capabilities

Phase 2:
Server authentication and key exchange

Phase 3:
Client authentication and key exchange

Phase 4:
Finalizing the handshake protocol

After Phase 3,
• (Optional) The client is authenticated for the server
• Both the client and the server know the pre-master secret

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

Pre-master secret
Pre-master secret

https://search/

Phase 3: Client Auth. and Key Exchange 74

https://search...

Client Server

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

Pre-master secret
Pre-master secret

Before move on Phase 4,
let’s make symmetric key

Why do we need a symmetric key
even though we already have asymmetric key?

https://search/

• Pros
− No need to share a secret
− Enable multiple senders to communicate privately with a single

receiver
− More applications: Digital sign

• Cons
− Slower in general: due to the larger key

§ Roughly 2-3 orders of magnitude slower

75Pros & Cons: Asymmetric-key Cryptography

Solution: Combination of Two Schemes 77

BobAlice

Encryption DecryptionSymmetric
key

Bob’s
public key (𝑝𝑘)

Bob’s
private key (s𝑘)

Symmetric
key

Share a symmetric key
with RSA algorithm

Solution: Combination of Two Schemes 78

BobAlice

Symmetric
key

Symmetric
key

Communication
with the symmetric key

Phase 3: Client Auth. and Key Exchange 79

https://search...

Client Server

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

Pre-master secret
Pre-master secret

Before move on Phase 4,
let’s make symmetric key

https://search/

Calculation of Master Secret 80

https://search...

Client Server

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

Pre-master secret
Pre-master secret

Pre-master secretClient random # Server random #

Message digest algorithm
(MD5 & SHA-1)

Master secret

https://search/

Calculation of Symmetric Key 81

https://search...

Client Server

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

Pre-master secret
Pre-master secret

Pre-master secretClient random # Server random #

Message digest algorithm
(MD5 & SHA-1)

Master secret

Message digest algorithm
(MD5 & SHA-1)

Symmetric key

https://search/

Calculation of Symmetric Key 82

https://search...

Client Server

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

Pre-master secret
Pre-master secret

Pre-master secretClient random # Server random #

Message digest algorithm
(MD5 & SHA-1)

Master secret

Message digest algorithm
(MD5 & SHA-1)

Symmetric key

Symmetric key Symmetric key

https://search/

Phase 3: Client Auth. and Key Exchange 83

https://search...

Client Server

Phase 1:
Establishing security capabilities

Phase 2:
Server authentication and key exchange

Phase 3:
Client authentication and key exchange

Phase 4:
Finalizing the handshake protocol

After Phase 3,
• (Optional) The client is authenticated for the server
• Both the client and the server know the pre-master secret

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

Pre-master secret
Pre-master secret

Symmetric key Symmetric key

https://search/

84

https://search...

Client Server

Phase 1:
Establishing security capabilities

Phase 2:
Server authentication and key exchange

Phase 3:
Client authentication and key exchange

Phase 4:
Finalizing the handshake protocol

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

Pre-master secret
Pre-master secret

Symmetric key Symmetric key

Phase 4: Finalizing the Handshake Protocol

https://search/

The client and server are ready to exchange data

85

https://search...

Client Server

Server’s
public key

Server random #Server random #
Client random # Client random #

Server’s
private key

Pre-master secret
Pre-master secret

Symmetric key Symmetric key

Phase 4: Finalizing the Handshake Protocol

1 1
Change Cipher Spec

2 MD5 Hash + SHA Hash
Finished

31
Change Cipher Spec

4MD5 Hash + SHA Hash
Finished

https://search/

Handshake
Protocol
Summary

SSL/TLS Basics

• Runs in the presentation layer
• Uses symmetric crypto, asymmetric crypto, and digital

signatures

• Composed of two layers of protocols:
1. Handshake protocol
2. Record protocol

87

Application Layer

Record Protocol

Transport Layer

SSL/TLS
Handshake Protocol

SSL/TLS Basics

• Runs in the presentation layer
• Uses symmetric crypto, asymmetric crypto, and digital

signatures

• Composed of two layers of protocols:
1. Handshake protocol
2. Record protocol

88

Application Layer

Transport Layer

SSL/TLS
Handshake Protocol

Record Protocol

SSL Record Protocol Operation 89

Client
auth. key

Server
auth. key

Client
enc. key

Server
enc. key

Client
IV

Server
IV

SSL Record Protocol Operation 90

Client
auth. key

Server
auth. key

Client
enc. key

Server
enc. key

Client
IV

Server
IV

SSL Record Protocol Operation 91

Client
auth. key

Server
auth. key

Client
enc. key

Server
enc. key

Client
IV

Server
IV

Optional step!

SSL Record Protocol Operation 92

Optional step!

MAC: Check both
integrity and authenticity

Client
auth. key

Server
auth. key

Client
enc. key

Server
enc. key

Client
IV

Server
IV

Symmetric Key

93

BobAlice Insecure channel

𝑥

𝑀𝐴𝐶

𝑚𝑎𝑐(𝑥)

Use the symmetric key!

Ref: Message Authentication Codes (MAC)

94

BobAlice Insecure channel

𝑥

𝑀𝐴𝐶

𝑚𝑎𝑐(𝑥)

𝑥
𝑚𝑎𝑐(𝑥)

𝑥

𝑚𝑎𝑐(𝑥)

Ref: Message Authentication Codes (MAC)

𝑥
𝑚𝑎𝑐(𝑥)

95

BobAlice Insecure channel

𝑥

𝑀𝐴𝐶

𝑚𝑎𝑐(𝑥)

𝑥
𝑚𝑎𝑐(𝑥)

𝑥
𝑚𝑎𝑐(𝑥)

Ref: Message Authentication Codes (MAC)

𝑥
𝑚𝑎𝑐(𝑥)

96

BobAlice Insecure channel

𝑥

𝑀𝐴𝐶

𝑚𝑎𝑐(𝑥)

𝑥
𝑚𝑎𝑐(𝑥)

𝑥

𝑥

Ref: Message Authentication Codes (MAC)

𝑥
𝑚𝑎𝑐(𝑥)

97

BobAlice Insecure channel

𝑥

𝑀𝐴𝐶

𝑚𝑎𝑐(𝑥)

𝑥
𝑚𝑎𝑐(𝑥)

𝑥

𝑀𝐴𝐶

𝑚𝑎𝑐(𝑥)
?

Check both integrity
and authenticity

Ref: Message Authentication Codes (MAC)

SSL Record Protocol Operation 98

Client
auth. key

Server
auth. key

Client
enc. key

Server
enc. key

Client
IV

Server
IV

Symmetric Key

SSL/TLS Final Overview 100

• Security goals: achieving confidentiality, integrity, and
authentication

−Confidentiality
§ Asymmetric-key algorithm for key exchange (pre-master key)
§ Symmetric-key algorithm for data exchange

−Integrity:
§ MAC (with hash algorithm)
§ If an attacker modifies the message, the recipient can detect the

modification

−Authentication
§ Authenticate the identity of the server using the server’s certificate

101How SSL/TLS Provides Security Properties?

• Security goals: achieving confidentiality, integrity, and
authentication

−Confidentiality
§ Asymmetric-key algorithm for key exchange (pre-master key)
§ Symmetric-key algorithm for data exchange

−Integrity:
§ MAC (with hash algorithm)
§ If an attacker modifies the message, the recipient can detect the

modification

−Authentication
§ Authenticate the identity of the server using the server’s certificate

102How SSL/TLS Provides Security Properties?

Are we safe now?

SSL/TLS Implementations

• Many open-source implementations of SSL/TLS are available
for developers

Can We Believe the
SSL/TLS Implementations?

Heartbleed Bug (in 2014)

• Famous bug in OpenSSL (in TLS heartbeat)

• An attacker can steal private keys

105

Heartbleed Bug: High-level Workflow 106

Client Server

heartbeat function
to check if the server is alive

Heartbleed Bug: High-level Workflow 107

Client Server

CSE610

Are you still there?
If so, respond with
a 6-byte string “CSE610”

Heartbleed Bug: High-level Workflow 108

Client Server

Are you still there?
If so, respond with
a 5000-byte string “CSE610”

CSE610XXXXXXXXX…

Heartbleed Bug: High-level Workflow 109

Client Server

Are you still there?
If so, respond with
a 5000-byte string “CSE610”

CSE610XXXXXXXXX…

Memory disclosure!
(leak private keys)

Frankencert, S&P’2014

• Design the first automated method for large-scale testing of
certificate validation logic in SSL/TLS implementations

110

SSL/TLS Objectives

• To protect
−Confidentiality
−Integrity
−Authenticity

SSL/TLS Objectives

• To protect
−Confidentiality
−Integrity
−Authenticity = certificate validation!!

§ Focus on server authentication
§ Protection against man-in-the-middle and other server

impersonation attacks

The focus of this paper

• Uses several pre-generated X.509 certificates intended for
testing.

Testing with a handful of valid certificates is unlikely to
uncover vulnerabilities in the certificate validation logic

Current State-of-the-Art

How to generate test certificates?

• Challenge:
− X.509 certificates are structurally complex data with intricate

semantic and syntactic constraints!
• Requirements

− Should be syntactically correct, otherwise won’t exercise most of the
cert validation code

− Must generate semantically bad certificates including unusual
combinations of features and extensions

− Must scale to millions of certs

Frankencert

1. Gather a corpus of real SSL/TLS certificates by
scanning the Internet

Frankencert

1. Gather a corpus of real SSL/TLS certificates by
scanning the Internet

2. Break them down into parts

Frankencert

1. Gather a corpus of real SSL/TLS certificates by
scanning the Internet

2. Break them down into parts

3. Generate frankencerts by mutating random
combinations of these parts

Collecting Seed Certificates

• Scan the internet and attempt an SSL connection to every host
listening 443

• Total 243,246 certificates

• Purpose: Use corpus of real certificates as the source of
syntactically valid certificate parts

Generating Frankencerts

• Generate a certificate by choosing parts randomly from seeds.
− Assembles parts into random combinations

version
from cert1

keyUsage
extension from

cert3

keyUsage
extension from

cert2

ExtendedkeyUsage
extension from cert4

How to interpret
frankencert test results?
Differential Testing!

Testing SSL/TLS Implementations

• Differential testing of SSL/TLS implementations

Input

openSSL

Comparison GnuTLS

MatrixSSL

.

.

.

Assumption: Multiple
implementations
should have the
same validation logic

Input

openSSL

GnuTLS

MatrixSSL

.

.

.

Accept? or Rejected?

Testing SSL/TLS Implementations

• Differential testing of SSL/TLS implementations

Comparison

Testing SSL/TLS Implementations

• Differential testing of SSL/TLS implementations

Input

Accept

Accept

Reject

.

.

.

Comparison

Testing SSL/TLS Implementations

• Differential testing of SSL/TLS implementations

• Target:
− SSL/TLS libraries: OpenSSL, PolarSSL, GnuTLS, CyaSSL, matrixSSL,

NSS...
− Web browsers: FireFox, Opera, Chrome

• 208 discrepancies are found by testing 8,127,600 frankencerts

Case Study: MatrixSSL

• Incorrect checking whether version 1 intermediate certificate
in the chain belongs to a valid CA

125

Just skip checking
for version 1 or 2

Man-in-the-middle attacks: Any server certified by the same root
can act as rogue CA and issue fake certificates for other domains

Review

• “Blind” nature of frankencert makes it cost-ineffective:
testing an enormous number of frankencerts are very resource-
intensive, but most of the frankencerts do not trigger any
discrepancies

• By adding existing pre-generated test suite as corpus, the
generated certificate will be more diverse and meaningful in
terms of testing

126

HTTPS

HTTPS

• Adding a protocol layer for secure communication!

128

Application
Presentation

Session
Transport
Network

Data Link
Physical

Used protocol

HTTP

SSL/TLSEncrypted
data

SSL/TLS
header

HTTP
Request

HTTPS Protocol =
HTTP + SSL/TLS

HTTPS – The Lock Icon

• Goal: the client (Human) can identify secure connection
− SSL/TLS is being used to protect against active network attacker

• Lock icon should only be show when the page is secure against
network attacker

− All elements on the page fetched using HTTPS
− Contents of the page have not been viewed or modified by an attacker
− HTTPS certificate is valid – “This webpage is really comes from

google.com server!”

129

HTTPS – The Lock Icon

• Goal: the client (Human) can identify secure connection
− SSL/TLS is being used to protect against active network attacker

• Lock icon should only be show when the page is secure against
network attacker

− All elements on the page fetched using HTTPS
− Contents of the page have not been viewed or modified by an attacker
− HTTPS certificate is valid – “This webpage is really comes from

google.com server!”

130

What happens if page
served over HTTPS but

contains HTTP?

• Page served over HTTPS but contains HTTP
− IE 7: no lock, warning

− Firefox: “!” over lock, no warning by default

− Safari: does not detect mixed content
− Chrome: lock icon, warning

131Mixed Content: Combining HTTPS and HTTP

Mixed Content and Network Attacks 132

https://bank.com/attack.html

<script
 src=‘http://site.com/script.js’>
</script>

https://websec-lab.com/cse467.html

Mixed Content and Network Attacks 133

https://bank.com/attack.html

<script
 src=‘http://site.com/script.js’>
</script>

Developer mistake

https://websec-lab.com/cse467.html

Mixed Content and Network Attacks 134

https://bank.com/attack.html

<script
 src=‘http://site.com/script.js’>
</script> App

site.com
web serverDeveloper mistake

https://websec-lab.com/cse467.html

Mixed Content and Network Attacks 135

https://bank.com/attack.html

<script
 src=‘http://site.com/script.js’>
</script> App

site.com
web server

Network attacker can now
inject any JS code

Developer mistake

https://websec-lab.com/cse467.html

Mixed Content and Network Attacks 136

https://bank.com/attack.html

<script
 src=‘//site.com/script.js’>
</script> App

site.com
web server

Better way to include content –
Served over the same protocol

as embedding page

https://websec-lab.com/cse467.html

HTTPS – Upgrade

• Come to site over HTTP (Port no. 80), redirect to HTTPS (Port
no. 443)!

137

<VirtualHost *:80>
 ServerName [Domain]
 Redirect permanent / https://[Domain]/
</VirtualHost>

Apache configuration

Forcing HTTPs: HTTP Strict Transport Security

• HTTP header (Strict-Transport-Security) send by server
− Only valid if sent via HTTPS
− Strict-Transport-Security: max-age=<expiry in seconds>

§ includeSubDomains: header is valid for all subdomains
§ preload: allows for inclusion in preload list

− Ensures that site cannot be loaded via HTTP until expiry is reached

138

Summary

• SSL/TLS protocol
− Satisfy confidentiality
− Satisfy integrity
− Satisfy authentication

• HTTPS: HTTP + SSL/TLS protocol

139

Question?

