NNNNNNNNNNNNNNNNNNNNNNNN
EEEEEEEEEEEEEEEEEEEE

CSE610: Web Programming &

Security
3. Client-side Security

Seongil Wi

Department of Computer Science and Engineering

S
Notice: Paper Presentatica)kn

« Paper list distribution: 3/5 (Today!), 6 PM

» Selection of papers for presentation will be on a first-come, first-
served basis (X12ha)

* |f | send you the Google Sheets link via email, you should fill in your
names next to the desired papers!

S
Notice: Term Project

« 1~2 persons for one team
» The topics must be related to the web security/web-related security
« Submit your proposal by 3/15, 11:59 PM

...
Proposal Submission Guidelines

You should upload a single PDF file on BlackBored.

The name of the PDF file should have the following format: [your ID-last
name.pdf]

— If your name is Gil-dong Hong, and your ID is 20231234, then you should submit
a file named “20231234-Hong.pdf”

— If your team consists of two people, each member must submit a PDF file

Your proposal must follow the following format:

— Template: Double-Column ACM format (Sigconf style) — provided on
BlackBored

— 2 pages maximum (reference is excluded)

— Format: Background, Motivation, Proposed Idea, Expected Results,
Research Timeline, Reference

Recap: Nested Execution*ModeI

* Windows may contain frames from different sources

—Frame: rigid visible division
—IFrame: floating inline frame

<iframe src=“b.com”>
</iframe>

Recap: Web Threat Models

* Network attacker: resides somewhere in the
communication link between client and server

—Passive: evasdropping
— Active: modification of messages, replay...

 Remote attacker: can connect to remote system via
the network

—Mostly targets the server

« Web attacker: controls attacker.com
—Can obtain SSL/TLS certificates for attacker.com

—Users can visit attacker.com

Web Attacker ;

3

http://attacker.com

Web attacker can
control of his webpage

Victims can visit attacker’s
L / webpage \

L (via phishing email, enticing content, ...)
Victim Web attacker

http://attacker.com/

Motivation of the Client-side Security

https://attacker.com/attack.html

L / <iframe src=‘https://mail.unist.ac.kr’>

= </iframe>
victim

HTTP Request

<script src=‘attacker.js’>
</script> /D

HTTP Response attacker.com
Web server

https://websec-lab.com/cse467.html

Motivation of the Client-side Security

https://attacker.com/attack.html

L / <iframe src=‘https://mail.unist.ac.kr’>

= </iframe>
victim

-
)| 4 —
_JS

attacker.js

attacker.com
Web server

https://websec-lab.com/cse467.html

Motivation of the Client-side Security

https://attacker.com/attack.html

‘-_/ Dy S“=‘““PS‘”'"aﬂ'""ist-ac-""—
</iframe>

mail.unist.com

victim
Web server

-
)| 4 —
_JS

attacker.js

attacker.com
Web server

https://websec-lab.com/cse467.html

N
Cookie: Making HTTP St;a‘eteful oy

 Store a server-created file (cookie) in the browser

 Examples
— Authentication (log in)
— Personalization (language preference, shopping cart)
— User tracking

* We can access all cookies for current document by

alert(document. cookie)

security=low; PHPSESSID=ca5213aba0449128c7caf0902b77f1e0

oK |

Motivation of the Client-side Security

https://attacker.com/attack.html

https://mail.unist.ac.kr

T ol
0 O
U Afer 2

’ A EHED
e mxjg
Wt B3t

a

o)

]

victim

mail.unist.com
Web server

—
)| 4 —
_JS

attacker.js

attacker.com
Web server

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

A World Without Separa;c‘jon between Sités

g/

victim

https://attacker.com/attack.html

§o) @ Mz 257 v

What if a script from attacker.com can
access data from mail.unist.ac.kr?

~ B30 e x| e v

(xi2)) 20l (HFEIBH -
s

el HX|E CSE =HERY / CSE donut time

1107 .
Read/write
K):39

A (@2) YMY (H=BE 25t healthcare_center@unist.ac.kr
[A70{4IE{] 2023.10. "Y.2 Al Fh(Useful

Send sensitive info.

JS

attacker.js

attacker.com
Web server

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

A World Without Separa;ion between Sitg

h

ttps://attacker.com/attack.html

https://mail.unist.ac.kr

H O
vz @ o se e What if a script from attacker.com can
—/ we wx . access data from mail.unist.ac.kr?
eEEE (Zl2) Ygo| (Hresszt -
VI Ctl m OE'-" EXI::, } CSE =iete) / CSE donut time 2o

healthcare_center@unist.ac.kr

wre wx|g

It would be able to read your emails,
private messages, authentication session cookies

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

-
Motivation of the CIient-iide Security

©)

o How can we prevent such
malicious behaviors?

)

Policy Goals j‘!

3

» Safe to visit an evil website | &tereer Qa®

A.com

» Safe to visit two pages at the same time

— Address bar distinguishes them @ hitp:/a.com SIEIE) (76 tp://0.com =ET
A.com
¢ AIIOW Safe delegation | e‘http:ﬁa.com IQW

A.com

N
Browser Sandbox

 No direct file access, limited access to OS

» Goal: Safely execute JavaScript code provided by a remote
website

— Isolated process when HTML rendering and JavaScript execution

-
Browser Sandbox Escapil;neg Vulnerabilities

» Related to memory-level vulnerabilities, including Use-After-
Free (UAF), heap overflow,...

» CVE-2013-6632
« CVE-2014-3188
« CVE-2015-6767
« CVE-2019-5850

Same Origin Policy (SOP) @

* One of the browser sandboxing mechanism
« The basic security model enforced in the browser

A World Without Separa;c‘jon between Sités

g/

victim

https://attacker.com/attack.html

§o) @ Mz 257 v

What if a script from attacker.com can
access data from mail.unist.ac.kr?

~ B30 e x| e v

(xi2)) 20l (HFEIBH -
s

el HX|E CSE =HERY / CSE donut time

1107 .
Read/write
K):39

A (@2) YMY (H=BE 25t healthcare_center@unist.ac.kr
[A70{4IE{] 2023.10. "Y.2 Al Fh(Useful

Send sensitive info.

JS

attacker.js

attacker.com
Web server

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Same Origin Policy (SOPz‘e ;

 Restricts scripts on one origin from accessing data from another
origin

Same Origin Policy (S()Pz‘e

 Restricts scripts on one origin from accessing data from another

origin
000 A h
https://attacker.com/attack.html ny resource nas
Its own origin
: Resources located at the
=/ https.//mail.unist.ac.kr origin
[I\
ooy
7 1N Js_J JavaScript runs with a
attacker.js

https.//attacker.com origin

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Same Origin Policy (SOPz‘e

 Restricts scripts on one origin from accessing data from another

origin
000 A h
https://attacker.com/attack.html ny resource nas
Its own origin
: Resources located at the
=/ https.//mail.unist.ac.kr origin
A JS runs with an origin cannot
access other origin resources
7 1NN JS JavaScript runs with a

attacker.js

https.//attacker.com origin

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Same Origin Policy (SOPz‘e ;

 Restricts scripts on one origin from accessing data from another

origin
000 A h
https://attacker.com/attack.html ny resource nas
Its own origin
‘ Resources located at the
=/ https.//mail.unist.ac.kr origin

A JS runs with an origin cannot

Aarracc nthar nrinin racniirrac

Uncaught DOMEXxception: Permission denied to access
property “document” on cross-origin object

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

-
Same Origin Policy (SOP)

 Restricts scripts on one origin from accessing data from another
origin

* The basic security model enforced in the browser

 Basic access control mechanism for web browsers
— All resources such as DOM, cookies, JavaScript has their own origin
- SOP allows a subject to access only the objects from the same origin

What is an Origin?

* Origin = Protocol + Domain Name + Port
—origin = protocol://domain:port

* Any resource has its own origin (owner)

* Two URLs have the same origin if the protocol, domain name
(not subdomains), port are the same for both URLs

— All three must be equal origin to be considered the same

Quiz — Same Origin?

» Consider this URL:
https://websec-lab.github.io

Origin = Protocol + Domain Name + Port

http://websec-lab.github.io
https://www.websec-lab.github.io
https://websec-lab.github.i0:443
https://websec-lab.github.io:8081

Same Origin?

M IR (yes) or g(No)

1

2

3

4
5 https://websec-lab.github.io/cse610

What is an Origin?

* Origin = Protocol + Domain Name + Port
—origin = protocol://domain:port

* Any resource has its own origin (owner)

* Two URLs have the same origin if the protocol, domain name
(not subdomains), port are the same for both URLs

— All three must be equal origin to be considered the same

N
Demo: Same Origin Poligél

https://websec-lab.qgithub.io/demo/demo4

<iframe id="UNIST_CSE”
src=https://cse.unist.ac.kr/>
</iframe>

https://websec-lab.github.io/demo/demo4
https://mail.units.ac.kr/
https://cse.unist.ac.kr/

S
Demo: Same Origin Policy

00 |

https://websec-lab.qgithub.io/demo/demo4

<iframe id="UNIST_CSE”
src=https://cse.unist.ac.kr/>
</iframe>

cookie =
document.getElementById(‘UNIST_CSE’).
contentWindow.document.cookie;
console.log(cookie)

https://websec-lab.github.io/demo/demo4
https://mail.units.ac.kr/
https://cse.unist.ac.kr/

-
Demo: Same Origin Poligk/

https://websec-lab.qgithub.io/demo/demo4

~ | <iframe id="UNIST_CSE”
src=https://cse.unist.ac.kr/>
</iframe>

Uncaught DOMException: Blocked a frame with origin
"https://lwebsec-lab.github.io” from accessing a cross-origin frame

https://websec-lab.github.io/demo/demo4
https://mail.units.ac.kr/
https://cse.unist.ac.kr/

DEMO

https://websec-lab.qgithub.io/courses/2024s-cse610/demo/demo4.html

https://websec-lab.github.io/courses/2024s-cse610/demo/demo4.html

For Your Information...

» Cross-origin loading of page resources is generally permitted

- E.g., the SOP allows embedding of external resources via HTML tags
(e.g., , <video>, <script>, ...)
000

.
— The origin of the loaded

<script script is https://attacker.com
src=‘https://cdn.com/bootstrap.js’>

</script>

 .
 The origin of the loaded

iImage is https://attacker.com

https://websec-lab.com/cse467.html

Analogy
* Operating system * Web browser

—Primitives (Resources) —Primitives (Resources)

» System calls = Document object model

* Processes * Frames

» Disk » Cookies / localStorage
—Principals: Users —Principals: “Origins”

= Discretionary access control » Mandatory access control
—Vulnerabilities —Vulnerabilities

= Buffer overflow » Cross-site scripting

* Root exploit » Cross-site request forgery

= Cache history attacks

If | need to communicate with
other websites, what methods

should be used?

Cross-Origin Resource Sharing (CORS)
PostMessage (PM)

Cookie Secu rity*‘ @

How to make HTTP stateful securely?

Same Origin Policy: “High Level”

* Recap: Same Origin Policy (SOP) for DOM:

Origin A can access origin B's DOM if match on:

(protocol, domain, port)

* Today: Same Origin Policy (SOP) for cookies:*

+
+

Generally speaking, based on:
([protocol], domain, path)

Optional

protocol://domain:port/path?params

Setting Cookies by Server

https://instagram.com

—
—

HTTP message .

/
e

--—

-—
_—
—
—
—
—
—_—
_—
—
—
_—
—-

HTTP Header:

Set-cookie: NAME = VALUE;

(B) Domain = (where to send);
Path = (where to send);
Expires = (when expires);

Secure; (only send over SSL)
HttpOnly; (later)

https://facebook.com/

Deleting Cookies by Server

—
—

HTTP message .

https://instagram.com

——
o
_-
_-
—~
o
-—
_—
_— o
—
-—-

/
e

HTTP Header:

Set-cookie:

¢.

Delete cookie by setting
“Expires” to date in past

NAME

Path

Expires
Secure; (only send over SSL)

= VALUE;

Domain

(where to send);
(where to send);
(when expires);

HttpOnly; (later)

https://facebook.com/

Cookie Scope

—
S

HTTP message @

https://instagram.com

/
e

-——

—
-—
—
—
_-
_-
—
—
_—
—~
——

HTTP Header:
Set-cookie:

Domain

NAME = VALUE;

(where to send);
Path = (where to send);
Expires (when expires);
Secure; (only send over SSL)

HttpOnly; (later)

https://facebook.com/

Cookie Scope

—
S

HTTP message @

https://instagram.com

/
e

—
L B ——
—-
—
—_—
--—
-—_
—_—
-—

—
—
—

HTTP Header:
Set-cookie:

Default scope is domain

and path of setting URL

NAME

Path

Expires
Secure; (only send over SSL)

= VALUE;

Domain

(where to send);
(where to send);
(when expires);

HttpOnly; (later)

https://facebook.com/

Motivating Example of the Cookie Write SOP

https://attacker.com

-

HTTP Header:
Set-cookie: SSID = [attacker’s session ID];

@ Domain = blackboard.unist.ac.kr;

https://facebook.com/

Motivating Example of th Cookie Write SOP

https://attacker.com

-

HTTP Header:
Set-cookie: SSID = [attacker’s session ID];
5 Domain = blackboard.unist.ac.kr;

The attacker can write

arbitrary values to the
arbitrary cookies

https://facebook.com/

Scope Setting Rules (Wri;ge SOP)

 Domain: any domain-suffix of URL-hosthame, except Top Level
Domain (TLD)

* Path: can be set to anything

Scope Setting Rules (Write SOP)

 Domain: any domain-suffix of URL-hosthame, except Top Level
Domain (TLD)

Question: which cookies can be set by login.site.com?

Idx | Cookie’s domain | Write Allowed?

1 login.site.com

2 .site.com

3 .com

4 seongyun.site.com

5 othersite.com

* Path: can be set to anything

Cookies are Identified b);‘e (name, domain, path)

Cookie 163 Cookie 2¢»

name = userid name = userid
Value = test = Value = testi123
domain = login.site.com domain = .site.com
Path = / Path = /

secure secure

Distinct

cookies

Browser’s Cookie Jar

Cookie 163 Cookie 2¢»

name = userid name = userid
Value = test Value = testl23
domain = login.site.com domain = .site.com
Path = / Path = /

secure secure

Both cookies are stored in browser’s cookie jar;
Both are in scope of login.site.com

https://login.site.com/

Reading Cookies on Server (Read SOP)

GET ///URL-domain/URL-path
Cookie: Name= value"

Web server

Which cookies will be

Which cookies will be
sent from the browser?

visible from the server?

https://login.site.com/

Reading Cookies on Server (Read SOP)

E—

GET ///URL-domain/URL-path
Cookie: Name= value"

Web server

 Browser sends all cookies in URL scope:
— Cookie domain is domain-suffix of URL-domain, and
— Cookie path is prefix of URL-path, and
| =HTTPS if cookie is “secure’]

« Goal: server only sees cookies in its scope

https://login.site.com/

Quiz: Read SOP

TCookie 1@

name = userid

Value = ul

domain = login.site.com
Path = /

secure

Cookie 2¢%

name = userid
Value = u2

domain = .site.com
Path = /
non-secure

m Request Domains Sent Cookies

http://checkout.site.com/

1
2

3

http://login.site.com/

https://login.site.com/

https://login.site.com/

Client-side Read/Write: document.cookie

« Setting a cookie in JavaScript:
-E.g., document.cookie = “name=value; expires=..;”
—-E.g., document.cookie = “ssid=AB31FBS5; domains=.unist.ac.kr”

* Reading a cookie: alert(document.cookie)
— Prints string containing all cookies available for document

 Deleting a cookie:
- Document.cookie = “name=; expires=Thu, 01-Jan-70"

Client-side Read/Write: d*?cument .cookie

We can access all cookies for current document by
alert(document.cookie)

security=low; PHPSESSID=ca5213aba0449128c7caf0902b77f1e0

OK

HttpOnly Cookies

—
—

HTTP message .

https://instagram.com

—
oy
—
_—
—
—
—
—_—
_—
—
—
_—
—-

/
e

HTTP Header:
Set-cookie: NAME = VALUE;

(B) Domain = (where to send);
Path = (where to send);
Expires = (when expires);
Secure; (only send over SSL)
HttpOnly;

This cookie will not be
accessible through JavaScript

https://facebook.com/

N
HttpOnly Cookies

« Cookie sent over HTTP(s), but not accessible to scripts
— Cannot be read via document. cookie

— Helps prevent cookie theft attacks

3

3

Elements

Application

D Manifest
“p Service workers

£ Storage

Storage

» BB Local storage

» EH Session storage
£ IndexedDB
£ web SQL

v (™S Cookies

Console

Sources Network

C |Filter

Name A

1P_JAR
AEC

DV

NID
OGPC
OoTZ

Performance Memory Application
;X
Value Domain
2024-3-5-0 .google.com
Ae3NU9OFRDOIfWD3Zj... .google.com

E_oD5fji1VMMuOJ-HU_...
512=DY8q1spa2bECS5...

19037049-1:
7454897_20_20__20_

www.google.com
.google.com
.google.com

www.google.com

Security

Lighthouse

Recorder J{ »

X ([J Only show cookies with an issue

Path

NN NN NN NN N~

Expire...

2024-0...
2024-0...
2024-0...
2024-0...
2024-0...
2024-0...

Size HttpOnly Secure
16

49

15

21 v

HttpOnly Cookie Demo

Cookie Protocol Problems

Cookie Protocol Problems

https://login.site. Com

Web server’,

. Server IS blind:
— Does not see cookie attributes (e.g., secure, HttpOnly attributes)
— Does not see which domain set the cookie

— Server only sees: cookie: NAME=VALUE

https://login.site.com/

Example 1: Login Server Problems

https://login.unist.ac.kr

SSID = Jihun;
Domain = .unist.ac.kr

login.unist.ac.kr

~cookier]
set-C O Web server

‘ig.

evil.unist.ac.kr
Web server

https://login.units.ac.kr/

Example 1: Login Server Problems

https://evil.unist.ac.kr

SSID = Jihun;
Domain = .unist.ac.kr

login.unist.ac.kr
Web server

evil.unist.ac.kr
Web server

https://login.units.ac.kr/

Example 1: Login Server*lzroblems

https://evil.unist.ac.kr

SSID = badguy;
Domain = .unist.ac.kr

login.unist.ac.kr
Web server

evil.unist.ac.kr
Web server

Not violate of SOP!
Why?

https://login.units.ac.kr/

Example 1: Login Server*lzroblems ;

ttps://blackboard.unist.ac.k

SSID = badguy;
Domain = .unist.ac.kr

homework_report.pdf

) o

Cookie: SSID = badguy;
" Domain = .unist.ac.kr blackboard.unist.ac.kr
Web server

Jihun's homework will be submitted under the name “badguy”

https://blackboard.unist.ac.kr/

...
Example 1: Login Server Problems

1. Jihun logs in at login.unist.ac.kr
login.site.com sets session-id cookie for .unist.ac.kr

2. Jihun visits evil.unist.ac.kr
overwrites .unist.ac.kr session-id cookie with session-id of user “badguy”

3. Jihun visits blackboard.unist.ac.kr to submit homework
Jihun’s homework will be submitted under the name “badguy”

The web server blackboard.unist.ac.kr expects session-id from
login.unist.ac.kr; But it cannot know that session-id cookie was
overwritten

Example 2: “secure” Cookies are not Secge

3

1. Alice logs in at https://accounts.google.com

—Set-Cookie: SSID=Au7_ ESAgDpKY5TGnf; Domain=.google.com;
Path=/; Expires=Wed, ©09-Mar-2026; Secure; HttpOnly

2. Alice visits http://www.google.com (cleartext)

- Network attacker can inject into response Set-Cookie:
SSID=badguy; secure and overwrite secure cookie

Network attacker can re-write HTTPS cookies

= HTTPS cookie value cannot be trusted

Recap: Web Threat Models

* Network attacker: resides somewhere in the
communication link between client and server

—Passive: evasdropping
— Active: modification of messages, replay...

 Remote attacker: can connect to remote system via
the network

—Mostly targets the server

« Web attacker: controls attacker.com
—Can obtain SSL/TLS certificates for attacker.com
—Users can visit attacker.com

Example 3: Path Separation is not a Security Measure

» Cookie SOP: path separation
x.com/A does not see cookies of x.com/B

* Not a security measure:
- DOM SOP: x.com/A has access to DOM of x.com/B

<iframe src=“x.com/B”></iframe>

alert(frames[0@].document.cookie);

» Path separation is done for efficiency not security:
— x.com/Ais only sent the cookies it needs

Root Cause: Cookies hava‘ee No Integrity

* End users and attackers can change and delete cookie values

@ DevTools is now available in Korean!

Always match Chrome's language J Switch DevTools to Korean JEsleliRE T Elly]

‘s [o Elements Console Sources Network Performance

Application >> B 1
Storage C [Filter =k X [Only show cookies W
» B8 Local storag Name A Value Domain P... E. S... H... S|
» EB Sessi torag 1P_JAR 2024-03-05-00 .googl... / 2.. 19 v
B IndexedDB Arbitrary Ae3NUSMNH... .googl... / 2. 62 v ¥
B web SQL NID 512=Q7sqIB-... .googl... / 2.1.. v ¢
v (& Cookies

@ https://www.google.com
& Private state tokens

« Simple example: shopping cart software
Set-cookie: shopping-cart-total = 150 ($)
User edits cookie contents (cookie poisoning):
Cookie: shopping-cart-total = 15 ($)

Solution: Cryptographic Checksums %

Ge‘ﬁerating tag T
& MACsign(k, SSID || name ||value)

« Goal: data integrity

Web server

Secret

key k

(unknown to
browser)

https://login.site.com/

Solution: Cryptographic Checksums ;

» Goal: data integrity Generating tag T
& MACsign(k, SSID || name ||value)

— Secret
Verifying tag T key k
& MACverify(k, SSID || name ||value, T) (unknown to

browser)

Binding to session-id (SSID) makes it harder to replay old cookies

https://login.site.com/

Example: ASP.NET ;

3

* System.Web.Configuration.MachineKey
— Secret web server key intended for cookie protection

 Creating an encrypted cookie with integrity:
HttpCookie cookie = new HttpCookie(name,val);
HttpCookie encodedCookie = HttpSecureCookie.Encode(cookie);

» Decrypting and validating an encrypted cookie:
HttpSecureCookie.Decode(cookie);

. eESSSSSSS—
Conclusion
__

Same Origin Policy (SOPZ.e : Same Origin Policy: "Hng Level”

* Restricts scripts on one origin from accessing data from another « Recap: Same Origin Policy (SOP) for DOM:
origin

https://attacker.com/attack.html Any resourcg .haS
its own origin

https://mail.unist.ac.kr
‘ Resources located at the
-/ e | https://mail.unist.ac.kr origin « Today: Same Origin Policy (SOP) for cookieS:"

A JS runs with an origin cannot
access other origin resources

Origin A can access origin B’s DOM if match on:

(protocol, domain, port)

Generally speaking, based on:

([protocol], domain, path)

Optional
]
Reading Cookies on Serv*gr (Read SOP) Scope Setting Rules (WrLEe SOP)

R
attaglfer js JavaScript runs with a
. https://attacker.com origin

[T T) .
https://login.site.com o — * Domain: any domain-suffix of URL-hostname, except Top Level
S— O — Domain (TLD)

E GET protocol://URL-domain/URL-path o 4
Cookie: Name= value' App

éﬁ Web server

2/
* Browser sends all cookies in URL scope:
- Cookie domain is domain-suffix of URL-domain, and
— Cookie path is prefix of URL-path, and
= [protocol=HTTPS if cookie is “secure”]

* Goal: server only sees cookies in its scope

* Path: can be set to anything

Question?

