
Seongil Wi

Department of Computer Science and Engineering

3. Client-side Security

CSE610: Web Programming &
Security

Notice: Paper Presentation
• Paper list distribution: 3/5 (Today!), 6 PM

• Selection of papers for presentation will be on a first-come, first-
served basis (선착순)

• If I send you the Google Sheets link via email, you should fill in your
names next to the desired papers!

2

Notice: Term Project
• 1~2 persons for one team
• The topics must be related to the web security/web-related security
• Submit your proposal by 3/15, 11:59 PM

3

Proposal Submission Guidelines
• You should upload a single PDF file on BlackBored.
• The name of the PDF file should have the following format: [your ID-last
name.pdf]

− If your name is Gil-dong Hong, and your ID is 20231234, then you should submit
a file named “20231234-Hong.pdf”

− If your team consists of two people, each member must submit a PDF file

• Your proposal must follow the following format:
− Template: Double-Column ACM format (Sigconf style) – provided on

BlackBored
− 2 pages maximum (reference is excluded)
− Format: Background, Motivation, Proposed Idea, Expected Results,

Research Timeline, Reference

4

Recap: Nested Execution Model

• Windows may contain frames from different sources
−Frame: rigid visible division
−iFrame: floating inline frame

5

<iframe src=“b.com”>
</iframe>

Recap: Web Threat Models
• Network attacker: resides somewhere in the

communication link between client and server
−Passive: evasdropping
−Active: modification of messages, replay…

• Remote attacker: can connect to remote system via
the network

−Mostly targets the server

• Web attacker: controls attacker.com
−Can obtain SSL/TLS certificates for attacker.com
−Users can visit attacker.com

6

Web Attacker 7

http://attacker.com

Web attacker

Web attacker can
control of his webpage

Victim

Victims can visit attacker’s
webpage

(via phishing email, enticing content, …)

http://attacker.com/

Motivation of the Client-side Security 8

https://attacker.com/attack.html

App
attacker.com
Web server

HTTP Request

HTTP Response

<iframe src=‘https://mail.unist.ac.kr’>
</iframe>

<script src=‘attacker.js’>
</script>

victim

https://websec-lab.com/cse467.html

Motivation of the Client-side Security 9

https://attacker.com/attack.html

<iframe src=‘https://mail.unist.ac.kr’>
</iframe>

victim

attacker.js App
attacker.com
Web server

https://websec-lab.com/cse467.html

Motivation of the Client-side Security 10

https://attacker.com/attack.html

<iframe src=‘https://mail.unist.ac.kr’>
</iframe>

victim

attacker.js App
attacker.com
Web server

App
mail.unist.com

Web server

https://websec-lab.com/cse467.html

Cookie: Making HTTP Stateful 11

• Store a server-created file (cookie) in the browser

• Examples
− Authentication (log in)
− Personalization (language preference, shopping cart)
− User tracking

• We can access all cookies for current document by
alert(document.cookie)

Motivation of the Client-side Security 12

https://attacker.com/attack.html

victim

attacker.js App
attacker.com
Web server

App
mail.unist.com

Web server

https://mail.unist.ac.kr

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

A World Without Separation between Sites13

https://attacker.com/attack.html

victim

attacker.js App
attacker.com
Web server

https://mail.unist.ac.kr

Read/write

Send sensitive info.

What if a script from attacker.com can
access data from mail.unist.ac.kr?

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

A World Without Separation between Sites14

https://attacker.com/attack.html

victim

attacker.js App
attacker.com
Web server

https://mail.unist.ac.kr

Read/write

Send sensitive info.It would be able to read your emails,
private messages, authentication session cookies

What if a script from attacker.com can
access data from mail.unist.ac.kr?

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Motivation of the Client-side Security 15

How can we prevent such
malicious behaviors?

Policy Goals

• Safe to visit an evil website

• Safe to visit two pages at the same time
− Address bar distinguishes them

• Allow safe delegation

16

Browser Sandbox

• No direct file access, limited access to OS
• Goal: Safely execute JavaScript code provided by a remote

website
− Isolated process when HTML rendering and JavaScript execution

17

Browser Sandbox Escaping Vulnerabilities

• Related to memory-level vulnerabilities, including Use-After-
Free (UAF), heap overflow,…

• CVE-2013-6632
• CVE-2014-3188
• CVE-2015-6767
• CVE-2019-5850

18

Same Origin Policy (SOP)
• One of the browser sandboxing mechanism
• The basic security model enforced in the browser

A World Without Separation between Sites20

https://attacker.com/attack.html

victim

attacker.js App
attacker.com
Web server

https://mail.unist.ac.kr

Read/write

Send sensitive info.

What if a script from attacker.com can
access data from mail.unist.ac.kr?

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Same Origin Policy (SOP) 21

• Restricts scripts on one origin from accessing data from another
origin

Same Origin Policy (SOP) 22

https://attacker.com/attack.html

attacker.js

https://mail.unist.ac.kr

Resources located at the
https://mail.unist.ac.kr origin

• Restricts scripts on one origin from accessing data from another
origin

Any resource has
its own origin

JavaScript runs with a
https://attacker.com origin

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Same Origin Policy (SOP) 23

https://attacker.com/attack.html

attacker.js

https://mail.unist.ac.kr

JavaScript runs with a
https://attacker.com origin

Resources located at the
https://mail.unist.ac.kr origin

• Restricts scripts on one origin from accessing data from another
origin

Any resource has
its own origin

A JS runs with an origin cannot
access other origin resources

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Same Origin Policy (SOP) 24

https://attacker.com/attack.html

attacker.js

https://mail.unist.ac.kr

JavaScript runs with a
https://attacker.com origin

Resources located at the
https://mail.unist.ac.kr origin

• Restricts scripts on one origin from accessing data from another
origin

Any resource has
its own origin

A JS runs with an origin cannot
access other origin resources

Uncaught DOMException: Permission denied to access
property “document” on cross-origin object

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Same Origin Policy (SOP) 25

• Restricts scripts on one origin from accessing data from another
origin

• The basic security model enforced in the browser

• Basic access control mechanism for web browsers
− All resources such as DOM, cookies, JavaScript has their own origin
− SOP allows a subject to access only the objects from the same origin

What is an Origin?

• Origin = Protocol + Domain Name + Port
− origin = protocol://domain:port

• Any resource has its own origin (owner)

• Two URLs have the same origin if the protocol, domain name
(not subdomains), port are the same for both URLs

− All three must be equal origin to be considered the same

26

Quiz – Same Origin?

• Consider this URL:
https://websec-lab.github.io

27

Idx URL Same Origin?
✓ (yes) or 𝘟 (No)

1 http://websec-lab.github.io
2 https://www.websec-lab.github.io
3 https://websec-lab.github.io:443
4 https://websec-lab.github.io:8081
5 https://websec-lab.github.io/cse610

Origin = Protocol + Domain Name + Port

What is an Origin?

• Origin = Protocol + Domain Name + Port
− origin = protocol://domain:port

• Any resource has its own origin (owner)

• Two URLs have the same origin if the protocol, domain name
(not subdomains), port are the same for both URLs

− All three must be equal origin to be considered the same

29

Demo: Same Origin Policy 30

https://websec-lab.github.io/demo/demo4

https://cse.unist.ac.kr

<iframe id="UNIST_CSE”
 src=https://cse.unist.ac.kr/>
</iframe>

https://websec-lab.github.io/demo/demo4
https://mail.units.ac.kr/
https://cse.unist.ac.kr/

Demo: Same Origin Policy 31

https://websec-lab.github.io/demo/demo4

https://cse.unist.ac.kr

<iframe id="UNIST_CSE”
 src=https://cse.unist.ac.kr/>
</iframe>

cookie =
document.getElementById(‘UNIST_CSE’).

contentWindow.document.cookie;
console.log(cookie)

https://websec-lab.github.io/demo/demo4
https://mail.units.ac.kr/
https://cse.unist.ac.kr/

Demo: Same Origin Policy 32

https://websec-lab.github.io/demo/demo4

https://cse.unist.ac.kr

<iframe id="UNIST_CSE”
 src=https://cse.unist.ac.kr/>
</iframe>

cookie =
document.getElementById(‘UNIST_CSE’).

contentWindow.document.cookie;
console.log(cookie)Uncaught DOMException: Blocked a frame with origin

"https://websec-lab.github.io" from accessing a cross-origin frame

https://websec-lab.github.io/demo/demo4
https://mail.units.ac.kr/
https://cse.unist.ac.kr/

DEMO
https://websec-lab.github.io/courses/2024s-cse610/demo/demo4.html

https://websec-lab.github.io/courses/2024s-cse610/demo/demo4.html

For Your Information…

• Cross-origin loading of page resources is generally permitted
− E.g., the SOP allows embedding of external resources via HTML tags

(e.g., , <video>, <script>, ...)

34

https://attacker.com/attack.html

<script
 src=‘https://cdn.com/bootstrap.js’>
</script>

The origin of the loaded
script is https://attacker.com

The origin of the loaded
image is https://attacker.com

https://websec-lab.com/cse467.html

Analogy
• Operating system

−Primitives (Resources)
§ System calls
§ Processes
§ Disk

−Principals: Users
§ Discretionary access control

−Vulnerabilities
§ Buffer overflow
§ Root exploit

35

• Web browser
−Primitives (Resources)

§ Document object model
§ Frames
§ Cookies / localStorage

−Principals: “Origins”
§ Mandatory access control

−Vulnerabilities
§ Cross-site scripting
§ Cross-site request forgery
§ Cache history attacks
§ …

If I need to communicate with
other websites, what methods
should be used?
Cross-Origin Resource Sharing (CORS)
PostMessage (PM)

Cookie Security
How to make HTTP stateful securely?

Same Origin Policy: “High Level”

• Recap: Same Origin Policy (SOP) for DOM:

• Today: Same Origin Policy (SOP) for cookies:

38

Origin A can access origin B’s DOM if match on:
(protocol, domain, port)

protocol://domain:port/path?params

Generally speaking, based on:
([protocol], domain, path)

Optional

Setting Cookies by Server 39

https://instagram.com

App
Web server

GET …

HTTP message

HTTP Header:
Set-cookie: NAME = VALUE;
 Domain = (where to send);
 Path = (where to send);
 Expires = (when expires);
 Secure; (only send over SSL)
 HttpOnly; (later)

https://facebook.com/

Deleting Cookies by Server 40

https://instagram.com

App
Web server

GET …

HTTP message

HTTP Header:
Set-cookie: NAME = VALUE;
 Domain = (where to send);
 Path = (where to send);
 Expires = (when expires);
 Secure; (only send over SSL)
 HttpOnly; (later)

Delete cookie by setting
“Expires” to date in past

https://facebook.com/

Cookie Scope 41

https://instagram.com

App
Web server

GET …

HTTP message

HTTP Header:
Set-cookie: NAME = VALUE;
 Domain = (where to send);
 Path = (where to send);
 Expires = (when expires);
 Secure; (only send over SSL)
 HttpOnly; (later)

Scope

https://facebook.com/

Cookie Scope 42

https://instagram.com

App
Web server

GET …

HTTP message

HTTP Header:
Set-cookie: NAME = VALUE;
 Domain = (where to send);
 Path = (where to send);
 Expires = (when expires);
 Secure; (only send over SSL)
 HttpOnly; (later)

Default scope is domain
and path of setting URL

https://facebook.com/

43

https://attacker.com

App

GET …

HTTP message
attacker.com
Web server

HTTP Header:
Set-cookie: SSID = [attacker’s session ID];
 Domain = blackboard.unist.ac.kr;

Motivating Example of the Cookie Write SOP

https://facebook.com/

44

https://attacker.com

App

GET …

HTTP message
attacker.com
Web server

HTTP Header:
Set-cookie: SSID = [attacker’s session ID];
 Domain = blackboard.unist.ac.kr;

Motivating Example of the Cookie Write SOP

The attacker can write
arbitrary values to the

arbitrary cookies

https://facebook.com/

Scope Setting Rules (Write SOP)

• Domain: any domain-suffix of URL-hostname, except Top Level
Domain (TLD)

• Path: can be set to anything

45

Scope Setting Rules (Write SOP)

• Domain: any domain-suffix of URL-hostname, except Top Level
Domain (TLD)

Question: which cookies can be set by login.site.com?

• Path: can be set to anything

46

Idx Cookie’s domain Write Allowed?
1 login.site.com
2 .site.com
3 .com

4 seongyun.site.com

5 othersite.com

48Cookies are Identified by (name, domain, path)

Cookie 1
name = userid
Value = test
domain = login.site.com
Path = /
secure

Cookie 2
name = userid
Value = test123
domain = .site.com
Path = /
secure

Distinct
cookies

49Browser’s Cookie Jar

Cookie 1
name = userid
Value = test
domain = login.site.com
Path = /
secure

Cookie 2
name = userid
Value = test123
domain = .site.com
Path = /
secure

https://login.site.com

Both cookies are stored in browser’s cookie jar;
Both are in scope of login.site.com

https://login.site.com/

Reading Cookies on Server (Read SOP) 50

https://login.site.com

App
Web server

GET protocol://URL-domain/URL-path
 Cookie: Name= value

Which cookies will be
sent from the browser?

Which cookies will be
visible from the server?

https://login.site.com/

Reading Cookies on Server (Read SOP)

• Browser sends all cookies in URL scope:
− Cookie domain is domain-suffix of URL-domain, and
− Cookie path is prefix of URL-path, and
− [protocol=HTTPS if cookie is “secure”]

• Goal: server only sees cookies in its scope

51

https://login.site.com

App
Web server

GET protocol://URL-domain/URL-path
 Cookie: Name= value

https://login.site.com/

Quiz: Read SOP 52

Cookie 1
name = userid
Value = u1
domain = login.site.com
Path = /
secure

Cookie 2
name = userid
Value = u2
domain = .site.com
Path = /
non-secure

https://login.site.com

Idx Request Domains Sent Cookies
1 http://checkout.site.com/
2 http://login.site.com/

3 https://login.site.com/

https://login.site.com/

Client-side Read/Write: document.cookie

• Setting a cookie in JavaScript:
− E.g., document.cookie = “name=value; expires=…;”
− E.g., document.cookie = “ssid=AB31FBS5; domains=.unist.ac.kr”

• Reading a cookie: alert(document.cookie)
− Prints string containing all cookies available for document

• Deleting a cookie:
− Document.cookie = “name=; expires=Thu, 01-Jan-70”

54

We can access all cookies for current document by
alert(document.cookie)

Client-side Read/Write: document.cookie 55

HttpOnly Cookies 56

https://instagram.com

App
Web server

GET …

HTTP message

HTTP Header:
Set-cookie: NAME = VALUE;
 Domain = (where to send);
 Path = (where to send);
 Expires = (when expires);
 Secure; (only send over SSL)
 HttpOnly;

This cookie will not be
accessible through JavaScript

https://facebook.com/

HttpOnly Cookies 57

• Cookie sent over HTTP(s), but not accessible to scripts
− Cannot be read via document.cookie
− Helps prevent cookie theft attacks

HttpOnly Cookie Demo

Cookie Protocol Problems

Cookie Protocol Problems

• Server is blind:
− Does not see cookie attributes (e.g., secure, HttpOnly attributes)
− Does not see which domain set the cookie

− Server only sees: cookie: NAME=VALUE

60

https://login.site.com

App
Web server

GET protocol://URL-domain/URL-path
 Cookie: Name= value

https://login.site.com/

Example 1: Login Server Problems 61

https://login.unist.ac.kr App
login.unist.ac.kr

Web server

App
evil.unist.ac.kr

Web server

Jihun

Set-c
ookie

: SSI
D = J

ihun;

Domai
n = .

unist
.ac.k

r

SSID = Jihun;
Domain = .unist.ac.kr

https://login.units.ac.kr/

Example 1: Login Server Problems 62

https://evil.unist.ac.kr App
login.unist.ac.kr

Web server

App
evil.unist.ac.kr

Web server

Jihun

Set-c
ookie

: SSI
D = J

ihun;

Domai
n = .

unist
.ac.k

r

Set-cookie: SSID = badguy;

 Domain = .unist.ac.kr

SSID = Jihun;
Domain = .unist.ac.kr

https://login.units.ac.kr/

Example 1: Login Server Problems 63

https://evil.unist.ac.kr App
login.unist.ac.kr

Web server

App
evil.unist.ac.kr

Web server

Jihun

Set-c
ookie

: SSI
D = J

ihun;

Domai
n = .

unist
.ac.k

r

Set-cookie: SSID = badguy;

 Domain = .unist.ac.kr

Not violate of SOP!
Why?

SSID = badguy;
Domain = .unist.ac.kr

https://login.units.ac.kr/

Example 1: Login Server Problems 64

https://blackboard.unist.ac.kr

App
blackboard.unist.ac.kr

Web server

Jihun

Cookie: SSID = badguy;
 Domain = .unist.ac.kr

SSID = badguy;
Domain = .unist.ac.kr

homework_report.pdf

Jihun’s homework will be submitted under the name “badguy”

https://blackboard.unist.ac.kr/

Example 1: Login Server Problems

1. Jihun logs in at login.unist.ac.kr
login.site.com sets session-id cookie for .unist.ac.kr

2. Jihun visits evil.unist.ac.kr
overwrites .unist.ac.kr session-id cookie with session-id of user “badguy”

3. Jihun visits blackboard.unist.ac.kr to submit homework
Jihun’s homework will be submitted under the name “badguy”

The web server blackboard.unist.ac.kr expects session-id from
login.unist.ac.kr; But it cannot know that session-id cookie was
overwritten

65

1. Alice logs in at https://accounts.google.com
− Set-Cookie: SSID=Au7_ESAgDpKY5TGnf; Domain=.google.com;
Path=/; Expires=Wed, 09-Mar-2026; Secure; HttpOnly

2. Alice visits http://www.google.com (cleartext)
− Network attacker can inject into response Set-Cookie:
SSID=badguy; secure and overwrite secure cookie

66Example 2: “secure” Cookies are not Secure

Network attacker can re-write HTTPS cookies
⇒ HTTPS cookie value cannot be trusted

Recap: Web Threat Models
• Network attacker: resides somewhere in the

communication link between client and server
−Passive: evasdropping
−Active: modification of messages, replay…

• Remote attacker: can connect to remote system via
the network

−Mostly targets the server

• Web attacker: controls attacker.com
−Can obtain SSL/TLS certificates for attacker.com
−Users can visit attacker.com

67

• Cookie SOP: path separation
x.com/A does not see cookies of x.com/B

• Not a security measure:
− DOM SOP: x.com/A has access to DOM of x.com/B

• Path separation is done for efficiency not security:
− x.com/A is only sent the cookies it needs

68Example 3: Path Separation is not a Security Measure

<iframe src=“x.com/B”></iframe>
alert(frames[0].document.cookie);

Root Cause: Cookies have No Integrity

• End users and attackers can change and delete cookie values

• Simple example: shopping cart software
Set-cookie: shopping-cart-total = 150 ($)

User edits cookie contents (cookie poisoning):
Cookie: shopping-cart-total = 15 ($)

69

Solution: Cryptographic Checksums
• Goal: data integrity

70

https://login.site.com

App
Web server

Set-Cookie: NAME = Value T

Generating tag T
⇐ MACsign(k, SSID || name ||value)

Secret
key k

(unknown to
browser)

https://login.site.com/

Solution: Cryptographic Checksums
• Goal: data integrity

71

https://login.site.com

App
Web server

Set-Cookie: NAME =

Cookie: NAME =

Value T

Value T

Secret
key k

(unknown to
browser)

Generating tag T
⇐ MACsign(k, SSID || name ||value)

Verifying tag T
⇐ MACverify(k, SSID || name ||value, T)

Binding to session-id (SSID) makes it harder to replay old cookies

https://login.site.com/

Example: ASP.NET

• System.Web.Configuration.MachineKey
− Secret web server key intended for cookie protection

• Creating an encrypted cookie with integrity:
HttpCookie cookie = new HttpCookie(name,val);
HttpCookie encodedCookie = HttpSecureCookie.Encode(cookie);

• Decrypting and validating an encrypted cookie:
HttpSecureCookie.Decode(cookie);

72

Conclusion 73

Question?

