NNNNNNNNNNNNNNNNNNNNNNNN
EEEEEEEEEEEEEEEEEEEE

CSE610: Web Programming &

Security
6. Content Security Policy

Seongil Wi

Department of Computer Science and Engineering

HW1 Announcement

« Hacking practice: Capture the Flag (CTF)
» Challenge open (competition start): 3/22 (Fri)
» Due date (writeup report): 4/9 (Tue)

* CTF server: http://10.20.12.187:4000/

— This server can only be accessed from the UNIST internal network.

- Please use a VPN to access from outside! Just log in to
nttps://vpn.unist.ac.kr and turn on VPN.

— Only our class member can access to this website

* |ID: [Your Student ID]J@unist.ac.kr
* PW: [Your Student ID]

* You should change your password! (It is recommended to use
random string)

http://10.20.12.187:4000/
https://vpn.unist.ac.kr/

N
HW1 Announcement

* 10 Challenges
- SQL Injection, File Upload Vulnerabilities, XSS

« Each flag is in the following format: flag{[0-9a-f{32}]}
—-e.g., flag{1la79a4d60de6718e8e5b326e338ae533}

* Do not attack the CTF environments, including web services!

Current Status

CSE610

Scoreboard

Top 30 Users M a Lk
350 -
300- / |
250 4 /

200 1
150

10044/

50

/1

ol | | | |
03-22 03-23 03-24 03-25 03-26 03-26
2024 2024 2024 2024 2024 2024

Challenges

3. XSS

Search V1 Search V2 Service Center Search V3

20 30 30 40

Search V4

45

2. File Upload Vulnerability

Uploader Uploader++

30 40

1.SQL Injection

Login Password Password++

20 30 40

Recap: Same Origin Poligkl (SOP)

 Restricts scripts on one origin from accessing data from another

origin
000 A h
https://attacker.com/attack.html ny resource nas
Its own origin
: Resources located at the
=/ https.//mail.unist.ac.kr origin
A JS runs with a origin cannot
access other origin resources
7 1NN JS JavaScript runs with a

attacker.js

https.//attacker.com origin

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Recap: What is an Origin?

* Origin = Protocol + Domain Name + Port

* Two URLs have the same origin if the protocol, domain name
(not subdomains), port are the same for both URLs

— All three must be equal origin to be considered the same

Recap: Cross-Site Scriptillg (XSS)

A code injection attack
* Malicious scripts are injected into benign and trusted websites
* Injected codes are executed at the attacker’s target origin

Recap: Cross-Site Scripting_(Q g

Search result for <?php echo $ GET[‘query’];?>
<?php

https://search.com

The page search.com says: Injected malicious codes
6 ‘ are executed at the

ook | https://search.com origin

hi

4
[
</body> .
</htm1>y search.co
(vulnerable web app)

<html>
<body>
Search result for

https://search.com/%3Fquery=%253cscript%253ealert(%E2%80%98hi%E2%80%99)%3B%253c/scriptdd

Recap: XSS Type (IMPORIANT!!)

» Reflected XSS (Server-side XSS)
« Stored XSS
 DOM-based XSS (Client-side XSS)

 Universal XSS

Recap: How to Prevent X*SS Attacks?@

#1: Input validation/sanitization
— Any user input must be preprocessed before it is used inside HTML
— Option 1-1: Implement your own sanitization logic (not recommended)

— Option 1-2: Use the good escaping libraries
* £.g., htmlspecialchars(string), htmlentities(string), ..

#2: Content Security Policy (CSP)
— A new security mechanism supported by modern browsers

Today's Topic!

Content Security Policy (CSP)

)

Content Security Policy (&SP)@

 Explicitly allow resources which are trusted by the developer
— Servers declare trusted sources

CSP Workflow

 Explicitly allow resources which are trusted by the developer
— Servers declare trusted sources

https://seonqgil.com

Browser

Server-side
application

https://wsplab.com/

CSP Workflow .

 Explicitly allow resources which are trusted by the developer
— Servers declare trusted sources

HTTP/1.1 2000K

Server: Apache/1.3 3 o r
Content-Security-Policy: | IRt to reflecte

script-src ‘none’; XSS attacks

<script> —
alert(Xss’) (&

</script> HTTP Response

Q/

https://seonqgil.com

Browser Server-side

application

https://wsplab.com/

CSP Workflow

 Explicitly allow resources which are trusted by the developer
— Servers declare trusted sources

HTTP/1.1 2000K
Server: Apache/1.3

Content-Security-Policy:
script-src ‘none’;

<script> -
https://seongil.com a:!-er‘t(XSS) Servel’S deCIare
</script> HTTP Response

trusted sources

Browser

https://wsplab.com/

CSP Workflow

 Explicitly allow resources which are trusted by the developer
— Servers declare trusted sources

HTTP/1.1 2000K
Server: Apache/1.3

Content-Security-Policy:
script-src ‘none’;

Q<scr‘ipt>

[alert(’XSS’)
</script> HTTP Response

https://seonqgil.com

Enforce!

Browser

https://wsplab.com/

Example Policy on paypaa‘le.com

emo: https://www.paypal.com/home

’ o .
' PayPaI PERSONAL BUSINESS DEVELOPER HELP (roem) m

We'll use cookies to improve and customize your experience if you continue

to browse. Is it OK if we also use cookies to show you personalized ads? Yes, Accept Cookies

Learn more and manage your cookies

(w {7 Inspector Console [Debugger T Network {} StyleEditor () Performance 4}k Memory [E) Storage T Accessibility 38 Application 0] e
@] Y Filter URLs I Q © Al HTML CSS JS XHR Fonts Images Media WS Other Disable Cache No Throttling ¢
itz Me Domain File Initi... Ty, Tran... Si [F] Headers Cookies Request Response Timings Stack Trace Security

htrr 33.9... Y Filter Header Block Rese

GE1 @ w PayPalSansSmall-Regt font fon 18.4 17 cache-control: max-age=0, no-cache, no-store, must-revalidate

GE1 # w... PayPalSansBig-Light.v font fon 18.5... 17
- y g9 content-security-policy: default-src 'self' https;//*.paypal.com https://*.paypalobjects.com; frame-src 'self' https://*.brighttalk.com https://*.paypal.com http

s:;//*.paypalobjects.com https;//www.youtube-nocookie.com https.//www.xoom.com https.//www.wootag.com https.//*.qualtrics.com; script-src 'nonce-qLhZM
xCKFtYeXvpfeNfWIrpuQOr/1Mrfgjot4uprHGPISLLL' 'self' https://*.paypal.com https.//*.paypalobjects.com https.//assets-cdn.s-xoom.com 'unsafe-inline' 'uns

afe-eval'; connect-src 'self* https;//nominatim.openstreetmap.org https.//*....ypal.com https://*.paypalobjects.com https;//assets-cdn.s-xoom.com 'unsafe-inlin
e'; font-src 'self’ https;//*.paypal.com https;//* paypalobjects.com https;//assets-cdn.s-xoom.com data:; img-src 'self' https: data:; fForm-action 'self* https;//*.p

aypal.com https://*.salesforce.com https://*.eloqua.com https://secure.opinionlab.com; base-uri 'self' https.//*.paypal.com; object-src 'none'; frame-ancestors '
self' https.//*.paypal.com; block-all-mixed-content;; report-uri https;//www.paypal.com/csplog/api/log/csp

GE1 @ w... open-chatjs script js 1.67... 1.« - =

GE1 @ w... 5531eb3c46cbd8507¢ style... css 50.2... 30
GE1 @ w... react-16_6_3-bundlej script js 36.4... 10

GE1@ w... pajs script js 20.3... 51

m
m
m
E
Tl GE1 & w... bs-chunkjs script js 893B 19
m
m
m

GE1 @ w... marketingintentsV2.j¢ script js 1.23... 55 date: Thu, 04 Mar 2021 21:36:03 GMT

https://www.paypal.com/home

Content Security Policy (CSP)@

 Explicitly allow resources which are trusted by the developer
— Servers declare trusted sources

* Disallow dangerous JS constructs like eval or event handlers

* Delivered as HT TP header or in meta element in page
—HTTP header: Content-Security-Policy: default-src ..

— Meta element: <meta http-equiv=“Content-Security-Policy”
content=“default-src..”>

« Enforced by the browser (all policies must be satisfied)
— Your browser must support CSP for its use

* First candidate recommendation in 2012, currently at Level 3

Browser Support .

& Chrome

Content-Security-Policy - Chrome 59+ Partial Support
Content-Security-Policy - Chrome 40+ Full Support Since January 2015

Content-Security-Policy - Chrome 25+ S .
afari

X-Webkit-CSP - Chrome 14-24

Content-Security-Policy - Safari 15.4+ Partial Support
Content-Security-Policy - Safari 10+

- Content-Security-Policy - Safari 7+
Q Firefox X-Webkit-CSP - Safari 6

Content-Security-Policy - Firefox 58+ Partial Support
Content-Security-Policy - Firefox 31+ Partial Support since July 2014
Content-Security-Policy - Firefox 23+ Full Support

X-Content-Security—-Policy - Firefox 4-22
€ Edge

Content-Security-Policy - Edge 79+ Partial Support
Content-Security-Policy - Edge 15+ Partial, 76+ Full
Content-Security-Policy - Edge 12+

CSP Popularity :

500,000

400,000 -

300,000 -

200,000 -

Avg. Daily Records with CSP

100,000 : : : : : :

s N % O s N Q $o) D N Q

PP PP P PP P
Quarters

https://www.bitsight.com/blog/content-security-policy-limits-dangerous-activity-so-why-isnt-everyone-doing-it

https://www.bitsight.com/blog/content-security-policy-limits-dangerous-activity-so-why-isnt-everyone-doing-it

Format of CSP ;

Policy := [directiveltvaluel];]...

A list of pairs of
directive and values

-
CSP Level 1 - Controlling Scripting Resources

Policy := [directive [valuel];]...

v’ Directive: script-src
» Specifically controls where scripts can be loaded from
* |If provided, inline scripts and eval will not be allowed

v Value: Many different ways to control sources
* ‘none’ — no scripts can be included from any host
* ‘self’ — only own origin
* https://domain.com — allow the script from this origin

* https://*.domain.com — any subdomain of domain.com, any
script on them

* https: — any origin delivered via HTTPs

e ‘unsafe-inline’ / ‘unsafe-eval’ - reenables inline
handlers and eval

Executes scripts only
CSP Level 1 - Example PRl from the same origin and

CSP for website https://example.com: https://unist.ac.kr

script-src ‘self’ https://unist.ac.kr;

Execution
AlladE Allowed?

<script src = “https://unist.ac.kr/myscript.js”></script> V4
<script src = “https://example.com/stuff.js”></script> \/
<script>alert(1)</script> // inline script X
<script src = “https://ad.com/someads.js”’></script> X

.
CSP Level 1 — Controlling Additional Resources

e img-src, style-src, font-src, object-src, media-src

— Controls non-scripting resources: images, CSS, fonts, objects,
audio/video

 frame-src
— Controls from which origins frames may be added to a page

* connect-src
— Controls XMLHttpRequest, WebSockets (and other) connection targets

* default-src
— Serves as fallback for all fetch directives (all of the above)
- Only used when specific directive is absent

N
CSP Level 1 - Exercise

CSP for website https://example.com:

default-src https://unist.ac.kr; script-src ‘unsafe-inline’;
img-src ‘self’

HTML Allowed?

<script>alert(1)</script> // inline script

<iframe src=“youtube.com/videol”></script>

<script src = “https://unist.ac.kr/stuff.js”></script>

-
CSP Level 1 — Example and Limitations

CSP for website https://example.com:

<script src = “https://ad.com/someads.js”’></script>

<script>

</script>

Content-Security-Policy: script-src ‘self’

» will block any scripts added here

-
CSP Level 1 — Example an Limitations

CSP for website https://example.com:

<script src = “https://ad.com/someads.js”’></script>

<script>

JS from company.com

</script> will be rejected

Content-Security-Policy: script-src ‘self’ https://ad.com

« will block inline script
* ... and script which was added by ad.com

-
CSP Level 1 — Example and Limitations

CSP for website https://example.com:

<script src = “https://ad.com/someads.js”’></script>

<script>

</script>

Content-Security-Policy: script-src ‘self’ https://ad.com

https://company.com
 will block inline script

-
CSP Level 1 — Example and Limitations

CSP for website https://example.com:

<script src = “https://ad.com/someads.js”’></script>

<script>

</script>

Content-Security-Policy: script-src ‘self’ https://ad.com

https://company.com ‘unsafe-inline’

« will allow inline script

S
CSP Level 1 — Example ag‘ed Limitations

CSP for website https://example.com:

<script src = “https://ad.com/someads.js”’></script>

<script>// XSS attack!</script>
<script>

</script>

Content-Security-Policy: script-src ‘self’ https://ad.com

https://company.com ‘unsafe-inline’

« will allow inline script

- ... but allow XSS injection We need to avoid the

use of ‘unsafe-inline’

-
CSP Level 1 — Example and Limitations

CSP for website https://example.com:

<script src = “https://ad.com/someads.js”’></script>

<script src =
“https://example.com/myinlinescript.js”’></script>

Content-Security-Policy: script-src ‘self’ https://ad.com

https://company.com

* requires removing inline script and converting it into an external
script

S
CSP Level 1 — Example an Limitations

CSP for website https://example.com:

<script src = “https://ad.com/someads.js”’></script>

<script src =
“https://example.com/myinlinescript.js”’></script>
<button onclick=“meaningful()”>Click me</button>

Content-Security-Policy: script-src ‘self’ https://ad.com

https://company.com
* removing onclick handler is painful...

-
CSP Level 1 — Example and Limitations

CSP for website https://example.com:

<script src = “https://ad.com/someads.js”’></script>

<script src =
“https://example.com/myinlinescript.js”’></script>

<button id=meaningful()>Click me</button>

<script src =
“https://example.com/eventhandler.js”></script>

var button = document.getElementById(“meaningful®);
button.onclick = meaningful;

Content-Security-Policy: script-src ‘self’ https://ad.com

https://company.com
* finally!

CSP Level 1 - Limitations';‘e ;

* If our goal is to allow scripts from own origin and inline scripts
— Solution: script-src ‘self’ ‘unsafe-inline’

* Problem: bypasses literally any protection
— Attacker can inject inline JavaScript

* One possible solution: removing inline script and converting it
Into an external script

For each inline script...

<script> convertin : e :] NN
alert (1) H <script src="myscript.js”>]{JS}}

</script> </script>

myscript.js

Problem: Removing inline script is painful

CSP Level 2 - Nonces ang Hashes

* Proposed improvement in CSP Level 2: nonces and hashes

 Allows every inline script adds nonce property
—script-src ‘nonce-%$value’ ‘self’

* Allows inline scripts based on their SHA hash (SHA256,
SHA384, or SHA512)

—script-src ‘sha256-%$hash’ ‘self’

CSP Level 2 — Example

script-src 'self' https://cdn.example.org

‘nonce-d90e0153c074f6¢c3fcf53" 'sha256-
5bf5¢c8f91b8cbadde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c

<script> <script>
alert(“My hash is correct”) alert(“incorrect”)
</script> </script>

SHA256 hash value:
5bf5¢c8f91b8cbadde74da363ac497d5acl9

e4595fte39cbdda22cec8445d3814c

CSP Level 2 - Example g

3

script-src 'self' https://cdn.example.org

‘nonce-d90e0153c074f6¢c3fcf53" 'sha256-
S5bf5c8f91b8cbadde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c

<script> \/ <script> X
alert(“My hash is correct”) alert(“incorrect”)
</script> </script>

SHA256 matches SHAZ256 does not

value of CSP header match

CSP Level 2 - Example g

3

script-src 'self' https://cdn.example.org

‘nonce-d90e0153c074f6¢c3fcf53" 'sha256-
S5bf5c8f91b8cbadde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c

<script> \/ <script> X

alert(“My hash is correct”) (::>lert(“My hash is correct”)
</script> </script>

SHA256 matches SHA256 does not match

value of CSP header (whitespaces matter)

CSP Level 2 - Example ;

3

script-src 'self' https://cdn.example.org

‘nonce-d90e0153c074f6¢c3fcf53" 'sha256-
S5bf5c8f91b8cbadde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c

<script nonce=“d90e0153c074f6¢c3fcf53”> |[<script nonce=“nocluehackplz”>
alert(“It’s all good”) alert(“I will not work”)

</script> \/ </script> x

Script nonce does not

Script nonce matches

CSP header match CSP header

N
CSP Level 2 - AdditionaI*Changes

e child-src
- Deprecates frame-src, also valid for Web Workers

e base-uri
— Controls whether <base> can be used and what it can be set to

 form-action

— Ensured that forms may only be sent to specific targets
— Does not fall back to default-src if not specified

CSP Level 2 - Limitationg‘e

script-src 'self' https://cdn.example.org

‘nonce-d90e0153c074f6Cc3fct53"

<script nonce=“d90e0153c074f6c3fcf53”>
script=document.createElement("script"); [WA[sRals\ A elglo1N=1[Taql1plE

script.src = "http://ad.com/ad.js"; without nonce
document.body.appendChild(script);

</script>

Does this script work under a
nonce-based policy?

-
Changes from Level 2 to Level 3: strict-dynamic

» Additional changes: add strict-dynamic

—Allows adding scripts programmatically, eases CSP
deployment in, e.g., ad scenario

* Mostly due to dynamic ADs
—-1st page load: script from ads.com — fancy-cars.com

—2nd page load: script from ads.com — cheap-ads.net —
dealsdeals.biz

* ldea: propagate trust

—If we trust ads.com, let’s also trust whoever ads.com load
script from

CSP Level 3 - strict-dyar‘leamic Example ;

script-src 'self' https://cdn.example.org

‘nonce-d99e0153c074f6c3fcf53° ‘strict-dynamic’

<script nonce=“d90e0153c074f6c3fcf53”>
script=document.createElement("script");
script.src = "http://ad.com/ad.js";
document.body.appendChild(script);

</script>

Propagate trust: we also trust this
script, so we allow it to execute

Changes from Level 2 to Le¥el 3: strict-dynamic

» Additional changes: add strict-dynamic

—Allows adding scripts programmatically, eases CSP
deployment in, e.g., ad scenario

* Not “parser-inserted”

CSP Level 3 - str‘ict-dyar‘leamic ;

script-src ‘nonce-d90e0153c074f6c3fcf53’

‘strict-dynamic’

<script nonce=“d90e0153c074f6c3fcf53”>
script =
document.createElement(“script”);
script.src = “http://ad.com/ad.js”;

</script>

<script nonce=“d90e0153c074f6c3fcf53”>
document.write(“<script
src = “http://ad.com/ad.js”>
</script>”)
</script>

document.body.appendChild(script); A

appendChild is not

“parser-inserted”

X

document.write is

“parser-inserted”

-
Changes from Level 2 to Level 3: strict-dynamic

» Additional changes: add strict-dynamic

—Allows adding scripts programmatically, eases CSP
deployment in, e.g., ad scenario

* Not “parser-inserted”

* Disables list of allowed hosts (such as “self’ and
‘unsafe-inline’)

CSP Level 3 - AdditionaI*Changes

e frame-src undeprecated

— Worker-src added to control workers specifically
— Both fall back to child-src if absent (which falls back to default-src)

e manifest-src
— Controls from where AppCache manifests can be loaded

CSP Level 3 — Backwards Compatibility

script-src https://ad.com ‘unsafe-inline’

‘nonce-d90e0153c074ft6¢c3fct53’° ‘strict-dynamic’

<script nonce=“d90e0153c074f6c3fcf53”>
script = document.createElement(“script”);
script.src = “http://ad.com/ad.js”;
document.body.appendChild(script);
</script>

CSP Level 3 - Backwards*CompatibiIity

script-src https://ad.-com“unsafte-inline”

‘nonce-d90e0153c074ft6¢c3fct53’° ‘strict-dynamic’

<script nonce=“d90e0153c074f6c3fcf53”>
script = document.createElement(“script”);
script.src = “http://ad.com/ad.js”’;
document.body.appendChild(script);
</script>

@% Ignores unsafe-inline

Modern browser and allowed hosts
(CSP Level 3)

CSP Level 3 - Backwards*CompatibiIity ;

script-src https://ad.com ‘unsafe-inline’

J €

<script nonce=“d90e0153c074f6c3fcf53”>
script = document.createElement(“script”);
script.src = “http://ad.com/ad.js”’;
document.body.appendChild(script);
</script>

. o Ignores strict-dynamic and
Ignores unsafe-inline :
nonce, executes script through
Modern browser and allowed hosts Old browser .
(CSP Level 3) k)] unsafe-inline and allowed hosts

CSP - Composition

* Browser always enforces all observed CSPs
— Hence, CSP can never be relaxed, only tightened

« Useful for combatting XSS and restricting hosts at the same time
- |dea: send two CSP headers, both will have to applied
» Policy 1: script-src ‘nonce-random’
» Policy 2: script-src ‘self’ https://cdn.com
— Only nonced scripts can be executed (policy 1)
— Only scripts from own origin and CDN can be executed (policy 2)

— Result: only scripts that carry a nonce and are hosted on origin/CDN are
allowed

CSP - Reporting Functiogeality

* report-uri <url>
— Sends JSON report to specified URL

* report-to <endpoint>
— Requires separate definition through Report-To HTTP header

CSP - Report Only Mode

* Implementation of CSP is a tedious process
— Removal of all inline scripts and usage of eval
— Tricky when depending on third-party providers

» E.g., advertisement includes random script (due to real-time bidding)

 Restrictive policy might break functionality
— Remember: client-side enforcement
— Need for (non-breaking) feedback channel to developers

» Content-Security-Policy-Report-Only
—default-src ...; report=uri /violations.php

— Allows to field-test without breaking functionality (reports current URL
and causes for fail)

— Does not work in meta element

Important!
2 3

* CSP does not stop XSS, tries to mitigate its effects
— Similar to, e.g., the NX bit for stacks on x86/x64

?:- How can we bypass CSP?
® |

—

CSP - Bypasses % . g

* Problem #1: User input at the trusted script

Problem #1: User Input

script-src ‘nonce-randoml23’ f‘strict-dynamic’;

« What if the injection happens directly at nonced script
elements?

<script nonce=“randoml23”’>
script=document.createElement("script");
script.src = user_input + “valid.js";
document.body.appendChild(script);
</script>

Problem #1: User Input . ;

script-src ‘nonce-randoml23’ f‘strict-dynamic’;

« What if the injection happens directly at nonced script
elements?

Executes on the

target origin

<script nonce=“randoml23”’>
script=document.createElement("sg
script.src = user_input + “valid.js";
document.body.appen@hild(script);
</script>

Attacker can inject
attacker.com

CSP Bypass: JSONP

* Any allowed site with JSONP endpoint is potentially dangerous

—-E.g., https://allowed.com/jsonp?callback=“my malicious code
here”//

Recap: JSONP XSS Attacks

« What if an attacker has a change to inject some string value in the
JSONP URL?

https://vulnerable.com

<script>
function read(json) {

document.write(json.temp)

weather.com
web server

h

</script>
<script
src="http://weather.com/
jsonp?callback=
alert(“xss’);read">
</script>

weather.com/jsonp?callback=
alert(‘xss’);read

alert(‘xss’);read([{
C(temp)): 36
“location”:

1)

“ULSAN”

https://search.com/?query=cse467

CSP Bypass: Flash ;

.3
* Not specifying object-src
— Flash can be allowed to access including site

<object nonce=“//evil.com/evil.swf”>
<param name=“allowscriptaccess” value = “always”>
</object>

Not an issue since Flash support was dropped. But
worth to remember for the future...

CSP - Bypasses % .

* Problem #1: User input at the trusted script

* Problem #2: Developer’s mistake/misconfiguration

Problem #2: Developer’s Mistake/Misconfiguratign

.3
* Developer's mistake

defalt-src ’self’

—Typo in the first directive leads to the default-src directive being
missing from the policy (Content Security Problems?, CCS’16)

* Developer’'s misconfiguration

default-src ‘unsafe-inline’ *

—Defining CSP is hard!
—Many website developers just allow all of the inline script and all hosts

—-94.72% of all website bypassible (e.g., misconfigured their CSP)
(CSP Is Dead, Long Live CSP!, CCS’2016)

CSP Is Dead, Long Live C*SP!, CCs’'16

 The first in-depth analysis of the security of CSP deployments
across the web

CSP is dead, long live csp! on the insecurity of whitelists and the future of content security policy

CCS 2016

CSP Is Dead, Long Live CSP! On the Insecurity of
Whitelists and the Future of Content Security Policy

Lukas Weichselbaum Sebastian Lekies

Michele Spagnuolo

Google Inc. Google Inc. Google Inc.
lwe@google.com mikispag@google.com slekies@google.com
Artur Janc
Google Inc.

aaj@google.com

ABSTRACT 1. INTRODUCTION

Sunghyun Yang(20225492)

Content Security Policy is a web platform mechanism de-
signed to mitigate cross-site scripting (XSS), the top security
vulnerability in modern web applications [24]. In this paper,
we take a closer look at the practical benefits of adopting

raTeh o T |

Cross-site scripting — the ability to inject attacker-con-
trolled scripts into the context of a web application — is
arguably the most notorious web vulnerability. Since the
first formal reference to XSS in a CERT advisory in 2000

TR] AR G TRt) T ANty R BTN b D Ay LS AN A Sr IR At Sd WL L S RN S f) R Rt s i

CSP Is Dead, Long Live C*SP!, CCs’'16

 Among 1.6 billion unique URLs from 1 billion hostnames and
175 million top private domains,

— 3.9 billion URLs carried a CSP (3.7%)

 Collected 26,011 unique policies

CSP Is Dead, Long Live C*SP!, CCs’'16 g

 Among 1.6 million hosts, collected 26,011 unique policies
- 87% were to prevent XSS

26011

Total
[script-src 22573
default-src 22294
style-src 20346
img-src 20179
font-src 17311
frame-src 16858

connect-src 14143
object-src 12514
report-uri 10773
media-src 10709
child-src
frame-ancestors

Directives

form-action 1734
base-uri 779
reflected-xss@ 711
489

upgrade-insecure-r...
referrerfl 418
block-all-mixed-cont...j 312
plugin-types] 256

sandbox] 147

Number of Policies

CSP Is Dead, Long Live C*SP!, CCs’'16

 Among 1.6 million hosts, collected 26,011 unique policies
- 87% were to prevent XSS
—-94.72% were bypassable!

CSP Is Dead, Long Live C*SP!, CCs’'16 g

Bypassable

Data Total Report Unsafe Missing Wildcard Unsafe Trivially
Set Only Inline object-src | in Whitelist| Domain Bypassable

OLA
Unique 26,011 2,591 21,947 3131 5,753 19,719 24,637
CSPs 9.96% 84.38% 12.04% 22.12% 75.81% 94.72%
XSS Poli- | 22,425 0 19,652 2,109 4,816 17,754 21,232
cies 0% 87.63% 9.4% 21.48% 79.17% 94.68%
Strict XSS | 2,437 0 0 348 0 1,015 1,244
Policies 0% 0% 14.28% 0% 41.65% 51.05%

« XSS Policies: A policy that holds script-src or object-src directive

 Strict XSS Policies: A policy that does NOT hold unsafe directive
values including ‘unsafe-inline’ and * for whitelisting all hosts

* 94.72% is bypassible!

CSP - Bypasses % .

* Problem #1: User input at the trusted script
* Problem #2: Developer’s mistake/misconfiguration

* Problem #3: Browser bugs (CSP enforcement bugs)

Problem #3: Browser Buges %

* NOTE: CSP is enforced by the browser

Well-defined CSP [2 “ is g Brecue atackers

Chrome

<?php
header (“HTTP/: 100”);
header(“Content-Security-Policy: default-src ‘self’”)

2>
<script>alert(l)</scrip

‘ \/ Execute
JS code

Chrome

Expected behavior:
Not execute JS code

S XNot execute
JS code

Firefox

DiffCSP, NDSS2023

 The first testing framework that identifies browser bugs in CSP
enforcement regarding JS execution

DiffCSP: Finding Browser Bugs in Content Security
Policy Enforcement through Differential Testing

*

Seongil Wi*, Trung Tin Nguyen'*, Jihwan Kim*, Ben Stock’, Sooel Son

*School of Computing, KAIST
TCISPA Helmholtz Center for Information Security
*Computer Science Graduate School, Saarland University

XSS attack payload:
http://[Target URL]/PoC.html#javascript:alert ('XSS")
CSP: script-src-elem 'sha256-aHbTR..."';
Target website:
<scriont>

Abstract—The Content Security Policy (CSP) is one of the
de facto security mechanisms that mitigate web threats. Many
websites have been deploying CSPs mainly to mitigate cross-
I site scrintine (XSS) attacks bv instructine client browsers to

L N S I

(Ref) Finding CSP Enforc*eement ;

Chrome Developer

Specification for CSP: hitps://www.w3.org/TR/CSP3/

https://www.w3.org/TR/CSP3/

(Ref) Finding CSP Enforc*eement

Specification <Reason: .
for CSP Buggy description

. , Misunderstand

* e

(Incorrectly) Implement \ 4
Chro

Developer

(Ref) Finding CSP Enforc*eement

Specification <Reason: .
for CSP Buggy description

. , Misunderstand

* e

(Incorrectly) Implement \ 4
Chro

Developer

(Ref) Finding CSP Enforc*eement :

Specification
for CSP

Our approach:
Differential testing!

Developer

Implement \ 4

Firefox

(Ref) Finding CSP Enforc*eement

Specification

for CSP

Safari

Chro

» Not
executed

Testlng CSPs

Testing HTMLs

Flrefox

Z’; Not
Scetcel ¢ Due to...

Buggy description \

Misunderstand

Executing JS Snippets in Diverse Ways ;

Our intuition: we can find bugs by
executing JS snippets in diverse ways

Grammar-based Input Gineration

Known CSP bugs

XSS payloads

ECMAScript spec
HTML cheat sheet Diverse ways of
executing JS snippets

Grammar-based Input Gg‘eneration g

Grammar |
Derive all known forms

[IS]

Known CSP bugs of executing JS codes

document.body.innerHTML+=
“<script>
eval(‘attack()”’) o—
</script>” -y ~-

~ Diverseways o

executing JS snippets

<iframe onload=

attack()>
</iframe>

Testing HTMLs

Grammar-based Input Generation

Grammar |
Derive all known forms

of executing JS codes

[IS]

Known CSP bugs document.body.innerHTML+=
“[HTML]”>

document.body.innerHTML+=
“[HTML]”

HTML cheat sheet

A

<

Testing HTMLs

Grammar-based Input Generation

Grammar |
T3] Derive all known forms
document.body.innerHTML+= Of eXeCUtlng JS COdeS
“[HTML]”>

eval(“[3S]’)

eval(“[3S]’))

HTML cheat sheet

A

<

Testing HTMLs

Grammar-based Input Generation

Grammar |
T3] Derive all known forms
document.body.innerHTML+= Of eXeCUtlng JS COdeS
“[HTML]”>
attack() eval(‘[35]°)
attack() N

<

Testing HTMLs

attack()

Grammar-based Input Generation

Grammar |
= Derive all known forms
document.body.innerHTML+= Of exeCUtlng JS COdeS
“[HTML]”>
eval(“[JS]’)
attack()
<iframe onload= <iframe onload=
[JS]> > [JS]>
</iframe> </iframe>

Testing HTMLs

Grammar-based Input Generation

Grammar |
T3] Derive all known forms
document.body.innerHTML+= Of eXeCUtlng JS COdeS
“[HTML]”>
<ngi?t> eval(‘[3S]’)
</script>

attack()

HTML cheat sheet

<iframe onload=
[IS]>
</iframe>

Testing HTMLs

<script>
[JsS]
</script>

Grammar-based Input Gg‘eneration

Grammar |
Derive all known forms

of executing JS codes

[IS]

Known CSP bugs document.body.innerHTML+=
“[HTML]”>

document.body.innerHTML+=
“<script> ¢ s
eval(“attack()”’) eval(“[35]%)
</script>” attack()
HTML cheat sheet
<iframe onload= <iframe onload=
attack()> [JS]>
</iframe> </iframe>

Testing HTMLs

<script>
[JsS]
</script>

Grammar-based Input Gineration ;

Known CSP bugs

document.body.innerHTML+=
“Kscript>
eval(‘attack()’)

</script>”

HTML cheat sheet

<iframe onload=

attack()>
</iframe>

Generate 25,880 HTML instances

"

Grammar
[3S]

document.body.innerHTML+=
“[HTML]”

eval([3S]’)

attack()

<iframe onload=
[IS]>
</iframe>

<script>
document.body.innerHTML+=
“<iframe onload=
eval(“attack()’)>
</iframe>”
</script>

Testing HTML #1

<iframe onload=
eval(‘document.body.innerHTML+=
“<script>
attack()
</script>”’)>
</iframe>

Testing HTML #2

CSP Generation ;

none, unsafe-inline,
unsafe-eval, self,
strict-dynamic, unsafe-hashes

script-src, Host-source Self URL, Allowed URL, *
script-src-elem, Schemes data:, blob:, http:, https:
script-src-attr Nonce-source nonce-123

Hash-source sha256-[HASH]

default-src,

Generate 1,006 policies

(Ref) Finding CSP Enforc*eement

Specification

for CSP

Z’: Not
A g xcciod | Result

Safar * Found 27 browser bugs in

Chrome, Safari, and FireFox
..and three description bugs
Chra » 23 bugs have been patched

(5,000% rewards)

Published in NDSS’23
executed

Testlng CSPs

Testing HTMLs

Flrefox

Let’'s Split HTMP and Code

« CSP is valuable and effective to mitigate XSS attacks

* Deploying CSP to legacy web applications is a painful and
difficult task

Why don’'t we make a tool to

automatically refactor the code?
=> deDacota, CCS ‘2013

deDacota, CCS '2013

« Secure legacy web applications by automatically and statically
rewriting an application so that the code and data are separated

deDacota: Toward Preventing Server-Side XSS
via Automatic Code and Data Separation

Adam Doupé Weidong Cui Mariusz H. Jakubowski
UC Santa Barbara Microsoft Research Microsoft Research
adoupe@cs.ucsb.edu wdcui@microsoft.com mariuszj@microsoft.com

Marcus Peinado Christopher Kruegel Giovanni Vigna
Microsoft Research UC Santa Barbara _UC Santa Barbara
marcuspe@microsoft.com chris@cs.ucsb.edu vignha@cs.ucsb.edu

ABSTRACT 1. INTRODUCTION

Web applications are constantly under attack. They are Web applications are prevalent and critical in today’s com-

popular, typically accessible from anywhere on the Internet, puting world, making them a popular attack target. Looking

and t,hey can be abused as malware delivery systems. at types of vulnerabilities reported in the Common Vulnera-
Cross-site scripting flaws are one of the most common bilities and Exposures (CVE) database [11], web application

types of vulnerabilities that are leveraged to compromise a flaws are by far the leading class.

web application and its users. A large set of cross-site script- Moden} web applications hﬁ\'f’ 0"01"‘0(1 into complex pro-

deDacota, CCS '2013

* Input: ASP.NET web application

* Output: Transformed web application that writes inlined
JavaScript snippet to a file system

‘ deDacota

- [

¢ ASPNET ~7 ASPNET
/ web application -~ web application N\
/ \ P \
/ . _” \
Write(“<html>”) Write(“<html>") [
Write(“<script>”) Write(“<script {°°°}
Write(“inline()”) src=‘inline.js'>”) Jo)
Write(“</script>”) Write(“</script>”) myscript.js
Write(“</html>”’) Write(“</html>”) inline()

deDacota - Build an Gragh ;

1. ldentify all Write function and its constant string arguments
2. ldentify the execution order of Write functions
3. Build an approximation graph

(<html>, Line 2)

\d

(<head><tile>, Line 5)
void Render (TextWriter w) {

w.Write("<html>\n "); <

|
2
3 this.Title = "Example"; —
4 this.Username = Request.Params["name"]; (Example, Line 6)
=
)
)
-

w.Write("\n <head><tile>");

L

(w.Write(this.Title);

- v . Write (" (/title ></head >\n <b0dy)\n @/headxbodyxscnptwu username = "
<script>\n var username = \"");

8 w.Write(this.Username);

9 w.Write("\";\n </script>\n </body>\n Statically
</html>"); -

10 } 4 : Undecidable

-
deDacota - Convert Welg‘eAppIication

1. From all possible execution path in a graph, finds lines that
emits <script> and </script>

2. Rewrites a program so that a string between <script> and
</script> can be stored in the session buffer

3. At the closing </scr|pt> the stored string at the session is
written at a file

l w.Write("</title></head>\n <body>\n ' J
9

3 Session["7"] = "\n var username = \"");
| Session(["7"] += thls Username;

5 Session(["7"] += "\";\n

O

7 var hashName = Hash(Session["7"]) + ".js";

8 WriteToFile(hashName, Session(["7"]);

10 w.Write("<script src=\"" + hashName + "
></script>);

11

12 w.Write("\n </body>\n</html>");

O
deDacota — Limitations

« deDacota changes the server application logic
— Auditing is hard whether the revised one is correct
— Execution overhead to write inlined JS code into files

« deDacota is unable to block XSS on the script snippets that are
dynamically changed by user inputs
— Separated files will contain injected payloads

—What is the point of having CSP if source JS file already contains the
payload?

 How about $script starter = db_read();
write($script_starter)? Instead of write(“<script>”’)
— False Negative

.
CSP - Other Use Cases

« Complex Security Policy?, NDSS °20

Script Content Control

— Document the evolution of CSP and its __|
use cases over time, showing its -~ TLS Enforcement
gradual move away from content e e 3
restriction to other security goals 400- ;

300 - ;

Complex Security Policy? A Longitudinal Analysis
of Deployed Content Security Policies

of sites

200 -

Sebastian Roth*, Timothy Barron!, Stefano Calzavara}, Nick Nikiforakis’, and Ben Stock*
*CISPA Helmbholtz Center for Information Security: {sebastian.roth,stock} @cispa.saarland K
f Stony Brook University: {tbarron,nick}@cs.stonybrook.edu 8"

Abstract—The Content Security Policy (CSP) mechanism was
developed as a mitigation against script injection attacks in
2010. In this paper, we leverage the unique vantage point of
the Internet Archive to conduct a historical and longitudinal
analysis of how CSP deployment has evolved for a set of 10,000
highly ranked domains. In doing so, we document the long-
term struggle site operators face when trying to roll out CSP
for content restriction and highlight that even seemingly secure
whitelists can be bypassed through expired or typo domains. Next
to these new insights, we also shed light on the usage of CSP
for other use cases, in particular, TLS enforcement and framing
control. Here, we find that CSP can be easily deployed to fit
those securitv scenarios. but both lack wide-spread adoontion.

Though the (in)effectiveness of CSP has been analyzed and
debated in several research papers [6, 8, 50, 51], CSP is still
under active development and is routinely adopted by more and
more Web sites: the most recent study [8] observed an increase
of one order of magnitude in CSP deployment in the wild
between 2014 and 2016. Notably though, virtually all papers
have focused on CSP as a means to restrict content and have
treated its newly added features (such as TLS enforcement
and framing control) as side notes. To close this research gap
and holistically analyze CSP it is important to take a critical
look at how CSP deployment has evolved over time, so as to
nnderctand for which nnrnocee develonere nee CSP and how

o |

¥ Universita Ca’ Foscari Venezia: calzavara@dais.unive.it 100 - .

T
2018

N
Recent Studies

- DiffCSP, NDSS ’23

- 12 angry developers, CCS 21

- Complex security policy?, NDSS 20

- CSP is dead, long live CSP!, CCS ’16

- Reining in the web with CSP, WWW °10
- CCSP, USENIX Security '17

- CSPAutoGen, CCS 16

.
Conclusion

« Content Security Policy (CSP)

— Allow resources which are trusted by the developer

* Many research on generating CSPs, deploying CSPs, and
bypassing CSPs

« Even if CSP is deployed, very hard to get right
— >90% of all policies in study of CSS 2016 easily bypassable

« CSP is an improvement, but by no means of complete fix

Question?

