
6. Content Security Policy

Seongil Wi

Department of Computer Science and Engineering

CSE610: Web Programming &
Security

HW1 Announcement
• Hacking practice: Capture the Flag (CTF)
• Challenge open (competition start): 3/22 (Fri)
• Due date (writeup report): 4/9 (Tue)

• CTF server: http://10.20.12.187:4000/
− This server can only be accessed from the UNIST internal network.
− Please use a VPN to access from outside! Just log in to

https://vpn.unist.ac.kr and turn on VPN.
− Only our class member can access to this website

• ID: [Your Student ID]@unist.ac.kr
• PW: [Your Student ID]
• You should change your password! (It is recommended to use

random string)

2

http://10.20.12.187:4000/
https://vpn.unist.ac.kr/

HW1 Announcement

• 10 Challenges
− SQL Injection, File Upload Vulnerabilities, XSS

• Each flag is in the following format: flag{[0-9a-f{32}]}
− e.g., flag{1a79a4d60de6718e8e5b326e338ae533}

• Do not attack the CTF environments, including web services!

3

Current Status 4

Recap: Same Origin Policy (SOP) 5

https://attacker.com/attack.html

attacker.js

https://mail.unist.ac.kr

JavaScript runs with a
https://attacker.com origin

Resources located at the
https://mail.unist.ac.kr origin

• Restricts scripts on one origin from accessing data from another
origin

Any resource has
its own origin

A JS runs with a origin cannot
access other origin resources

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Recap: What is an Origin?

• Origin = Protocol + Domain Name + Port
• Two URLs have the same origin if the protocol, domain name

(not subdomains), port are the same for both URLs
− All three must be equal origin to be considered the same

6

Recap: Cross-Site Scripting (XSS)

• A code injection attack
• Malicious scripts are injected into benign and trusted websites
• Injected codes are executed at the attacker’s target origin

7

Recap: Cross-Site Scripting (XSS) 8

App
search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html>
<body>
Search result for <?php echo $_GET[‘query’];?>
<?php
// get results from DB and print them

?>
</body>

</html>

Search result for
1. Foo
…

The page search.com says:

hi

<html>
 <body>
 Search result for <script>alert(‘hi’)</script>
 ...
 </body>
</html>

Injected malicious codes
are executed at the

https://search.com origin

https://search.com/%3Fquery=%253cscript%253ealert(%E2%80%98hi%E2%80%99)%3B%253c/scriptdd

Recap: XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

9

Recap: How to Prevent XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

− Option 1-2: Use the good escaping libraries
§ E.g., htmlspecialchars(string), htmlentities(string), …

#2: Content Security Policy (CSP)
− A new security mechanism supported by modern browsers

10

Today’s Topic!

Content Security Policy (CSP)

Content Security Policy (CSP)

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

12

13

https://seongil.com

App
Browser Server-side

application

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

CSP Workflow

https://wsplab.com/

CSP Workflow 14

https://seongil.com

App
Browser Server-side

application

HTTP/1.1 200OK
Server: Apache/1.3
Content-Security-Policy:

script-src ‘none’;

<script>
alert(‘XSS’)

</script> HTTP Response

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

e.g., due to reflected
XSS attacks

https://wsplab.com/

15

HTTP/1.1 200OK
Server: Apache/1.3
Content-Security-Policy:

script-src ‘none’;

<script>
alert(‘XSS’)

</script> https://seongil.com

Browser

CSP Workflow

HTTP Response

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

Servers declare
trusted sources

https://wsplab.com/

16

HTTP/1.1 200OK
Server: Apache/1.3
Content-Security-Policy:

script-src ‘none’;

<script>
alert(‘XSS’)

</script> https://seongil.com

Browser
Enforce!

Block

CSP Workflow

HTTP Response

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

https://wsplab.com/

Example Policy on paypal.com

Demo: https://www.paypal.com/home

17

https://www.paypal.com/home

Content Security Policy (CSP)

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

• Disallow dangerous JS constructs like eval or event handlers
• Delivered as HTTP header or in meta element in page

− HTTP header: Content-Security-Policy: default-src …
− Meta element: <meta http-equiv=“Content-Security-Policy”
content=“default-src…”>

• Enforced by the browser (all policies must be satisfied)
− Your browser must support CSP for its use

• First candidate recommendation in 2012, currently at Level 3

18

Browser Support 19

CSP Popularity 20

https://www.bitsight.com/blog/content-security-policy-limits-dangerous-activity-so-why-isnt-everyone-doing-it

100,000

200,000

300,000

400,000

500,000

20
17
Q1

20
17
Q2

20
17
Q3

20
17
Q4

20
18
Q1

20
18
Q2

20
18
Q3

20
18
Q4

20
19
Q1

20
19
Q2

20
19
Q3

20
19
Q4

20
20
Q1

20
20
Q2

Av
g.

 D
ai

ly
 R

ec
or

ds
 w

ith
 C

SP

Quarters

https://www.bitsight.com/blog/content-security-policy-limits-dangerous-activity-so-why-isnt-everyone-doing-it

Format of CSP 21

Policy := [directive [value1];]...

A list of pairs of
directive and values

ü Directive: script-src
• Specifically controls where scripts can be loaded from
• If provided, inline scripts and eval will not be allowed

ü Value: Many different ways to control sources
• ‘none’ – no scripts can be included from any host
• ‘self’ – only own origin
• https://domain.com – allow the script from this origin
• https://*.domain.com – any subdomain of domain.com, any

script on them
• https: – any origin delivered via HTTPs
• ‘unsafe-inline’ / ‘unsafe-eval’ – reenables inline

handlers and eval

22CSP Level 1 – Controlling Scripting Resources
Policy := [directive [value1];]...

CSP Level 1 – Example 23

script-src ‘self’ https://unist.ac.kr;
CSP for website https://example.com:

HTML Execution
Allowed?

<script src = “https://unist.ac.kr/myscript.js”></script>

<script src = “https://example.com/stuff.js”></script>

<script>alert(1)</script> // inline script

<script src = “https://ad.com/someads.js”></script>

Executes scripts only
from the same origin and

https://unist.ac.kr

✓

✓

𝘟

𝘟

24CSP Level 1 – Controlling Additional Resources

• img-src, style-src, font-src, object-src, media-src
− Controls non-scripting resources: images, CSS, fonts, objects,

audio/video

• frame-src
− Controls from which origins frames may be added to a page

• connect-src
− Controls XMLHttpRequest, WebSockets (and other) connection targets

• default-src
− Serves as fallback for all fetch directives (all of the above)
− Only used when specific directive is absent

CSP Level 1 – Exercise 25

default-src https://unist.ac.kr; script-src ‘unsafe-inline’;
img-src ‘self’

CSP for website https://example.com:

HTML Allowed?

<script>alert(1)</script> // inline script

<iframe src=“youtube.com/video1”></script>

<script src = “https://unist.ac.kr/stuff.js”></script>

CSP Level 1 – Example and Limitations 27

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com

<script>
// … some required inline script
</script>

CSP for website https://example.com:

• will block any scripts added here

Content-Security-Policy: script-src ‘self’

CSP Level 1 – Example and Limitations 28

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com

<script>
// … some required inline script
</script>

CSP for website https://example.com:

• will block inline script
• … and script which was added by ad.com

Content-Security-Policy: script-src ‘self’ https://ad.com

JS from company.com
will be rejected

CSP Level 1 – Example and Limitations 29

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com

<script>
// … some required inline script
</script>

CSP for website https://example.com:

• will block inline script

Content-Security-Policy: script-src ‘self’ https://ad.com
https://company.com

CSP Level 1 – Example and Limitations 30

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com

<script>
// … some required inline script
</script>

CSP for website https://example.com:

• will allow inline script

Content-Security-Policy: script-src ‘self’ https://ad.com
https://company.com ‘unsafe-inline’

CSP Level 1 – Example and Limitations 31

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com
<script>// XSS attack!</script>
<script>
// … some required inline script
</script>

CSP for website https://example.com:

• will allow inline script
• … but allow XSS injection

Content-Security-Policy: script-src ‘self’ https://ad.com
https://company.com ‘unsafe-inline’

We need to avoid the
use of ‘unsafe-inline’

CSP Level 1 – Example and Limitations 32

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com
<script src =
 “https://example.com/myinlinescript.js”></script>

CSP for website https://example.com:

• requires removing inline script and converting it into an external
script

Content-Security-Policy: script-src ‘self’ https://ad.com
https://company.com

CSP Level 1 – Example and Limitations 33

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com
<script src =
 “https://example.com/myinlinescript.js”></script>
<button onclick=“meaningful()”>Click me</button>

CSP for website https://example.com:

• removing onclick handler is painful…

Content-Security-Policy: script-src ‘self’ https://ad.com
https://company.com

CSP Level 1 – Example and Limitations 34

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com
<script src =
 “https://example.com/myinlinescript.js”></script>
<button id=meaningful()>Click me</button>
<script src =
 “https://example.com/eventhandler.js”></script>

CSP for website https://example.com:

• finally!

Content-Security-Policy: script-src ‘self’ https://ad.com
https://company.com

var button = document.getElementById(“meaningful”);
button.onclick = meaningful;

CSP Level 1 – Limitations

• If our goal is to allow scripts from own origin and inline scripts
− Solution: script-src ‘self’ ‘unsafe-inline’

• Problem: bypasses literally any protection
− Attacker can inject inline JavaScript

• One possible solution: removing inline script and converting it
into an external script

35

<script>
 alert(1)
</script>

alert(1)For each inline script…
converting <script src=“myscript.js”>

</script>
myscript.js

Problem: Removing inline script is painful

CSP Level 2 – Nonces and Hashes

• Proposed improvement in CSP Level 2: nonces and hashes
• Allows every inline script adds nonce property

−script-src ‘nonce-$value’ ‘self’

• Allows inline scripts based on their SHA hash (SHA256,
SHA384, or SHA512)

−script-src ‘sha256-$hash’ ‘self’

36

CSP Level 2 – Example 37

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53' 'sha256-
5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c'

<script>
alert(“My hash is correct”)
</script>

<script>
alert(“incorrect”)
</script>

SHA256 hash value:
5bf5c8f91b8c6adde74da363ac497d5ac19

e4595fe39cbdda22cec8445d3814c

CSP Level 2 – Example 38

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53' 'sha256-
5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c'

<script>
alert(“My hash is correct”)
</script>

<script>
alert(“incorrect”)
</script>

✓ 𝘟

SHA256 matches
value of CSP header

SHA256 does not
match

CSP Level 2 – Example 39

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53' 'sha256-
5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c'

<script>
alert(“My hash is correct”)
</script>

✓

SHA256 matches
value of CSP header

SHA256 does not match
(whitespaces matter)

<script>
 alert(“My hash is correct”)
</script>

𝘟

CSP Level 2 – Example 40

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53' 'sha256-
5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c'

<script nonce=“d90e0153c074f6c3fcf53”>
alert(“It’s all good”)
</script>

<script nonce=“nocluehackplz”>
alert(“I will not work”)
</script> ✓ 𝘟

Script nonce matches
CSP header

Script nonce does not
match CSP header

CSP Level 2 – Additional Changes

• child-src
− Deprecates frame-src, also valid for Web Workers

• base-uri
− Controls whether <base> can be used and what it can be set to

• form-action
− Ensured that forms may only be sent to specific targets
− Does not fall back to default-src if not specified

41

CSP Level 2 – Limitations 42

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53'

<script nonce=“d90e0153c074f6c3fcf53”>
script=document.createElement("script");
script.src = "http://ad.com/ad.js";

 document.body.appendChild(script);
</script>

Does this script work under a
nonce-based policy? No!

Add new script element
without nonce

• Additional changes: add strict-dynamic
−Allows adding scripts programmatically, eases CSP

deployment in, e.g., ad scenario

• Mostly due to dynamic ADs
−1st page load: script from ads.com → fancy-cars.com
−2nd page load: script from ads.com → cheap-ads.net →

dealsdeals.biz

• Idea: propagate trust
−If we trust ads.com, let’s also trust whoever ads.com load

script from

43Changes from Level 2 to Level 3: strict-dynamic

CSP Level 3 – strict-dynamic Example 44

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53’ ‘strict-dynamic’

<script nonce=“d90e0153c074f6c3fcf53”>
script=document.createElement("script");
script.src = "http://ad.com/ad.js";

 document.body.appendChild(script);
</script>

Propagate trust: we also trust this
script, so we allow it to execute

We trust this script

• Additional changes: add strict-dynamic
−Allows adding scripts programmatically, eases CSP

deployment in, e.g., ad scenario

• Not “parser-inserted”

45Changes from Level 2 to Level 3: strict-dynamic

CSP Level 3 – strict-dynamic 46

script-src ‘nonce-d90e0153c074f6c3fcf53’ ‘strict-dynamic'

<script nonce=“d90e0153c074f6c3fcf53”>
 script =
 document.createElement(“script”);
 script.src = “http://ad.com/ad.js”;
 document.body.appendChild(script);
</script>

<script nonce=“d90e0153c074f6c3fcf53”>
 document.write(“<script
 src = “http://ad.com/ad.js”>

</script>”)
</script>

✓ 𝘟
appendChild is not

“parser-inserted”
document.write is

“parser-inserted”

• Additional changes: add strict-dynamic
−Allows adding scripts programmatically, eases CSP

deployment in, e.g., ad scenario

• Not “parser-inserted”

• Disables list of allowed hosts (such as ‘self’ and
‘unsafe-inline’)

47Changes from Level 2 to Level 3: strict-dynamic

CSP Level 3 – Additional Changes

• frame-src undeprecated
− Worker-src added to control workers specifically
− Both fall back to child-src if absent (which falls back to default-src)

• manifest-src
− Controls from where AppCache manifests can be loaded

48

CSP Level 3 – Backwards Compatibility 49

script-src https://ad.com ‘unsafe-inline’
‘nonce-d90e0153c074f6c3fcf53’ ‘strict-dynamic'

<script nonce=“d90e0153c074f6c3fcf53”>
 script = document.createElement(“script”);
 script.src = “http://ad.com/ad.js”;
 document.body.appendChild(script);
</script>

CSP Level 3 – Backwards Compatibility 50

script-src https://ad.com ‘unsafe-inline’
‘nonce-d90e0153c074f6c3fcf53’ ‘strict-dynamic'

<script nonce=“d90e0153c074f6c3fcf53”>
 script = document.createElement(“script”);
 script.src = “http://ad.com/ad.js”;
 document.body.appendChild(script);
</script>

Modern browser
(CSP Level 3)

Ignores unsafe-inline
and allowed hosts

CSP Level 3 – Backwards Compatibility 51

script-src https://ad.com ‘unsafe-inline’
‘nonce-d90e0153c074f6c3fcf53’ ‘strict-dynamic'

<script nonce=“d90e0153c074f6c3fcf53”>
 script = document.createElement(“script”);
 script.src = “http://ad.com/ad.js”;
 document.body.appendChild(script);
</script>

Modern browser
(CSP Level 3)

Old browser
(CSP Level 1)

Ignores unsafe-inline
and allowed hosts

Ignores strict-dynamic and
nonce, executes script through
unsafe-inline and allowed hosts

CSP – Composition

• Browser always enforces all observed CSPs
− Hence, CSP can never be relaxed, only tightened

• Useful for combatting XSS and restricting hosts at the same time
− Idea: send two CSP headers, both will have to applied

§ Policy 1: script-src ‘nonce-random’
§ Policy 2: script-src ‘self’ https://cdn.com

− Only nonced scripts can be executed (policy 1)
− Only scripts from own origin and CDN can be executed (policy 2)
− Result: only scripts that carry a nonce and are hosted on origin/CDN are

allowed

52

CSP – Reporting Functionality

• report-uri <url>
− Sends JSON report to specified URL

• report-to <endpoint>
− Requires separate definition through Report-To HTTP header

53

CSP – Report Only Mode

• Implementation of CSP is a tedious process
− Removal of all inline scripts and usage of eval
− Tricky when depending on third-party providers

§ E.g., advertisement includes random script (due to real-time bidding)

• Restrictive policy might break functionality
− Remember: client-side enforcement
− Need for (non-breaking) feedback channel to developers

• Content-Security-Policy-Report-Only
− default-src ….; report=uri /violations.php
− Allows to field-test without breaking functionality (reports current URL

and causes for fail)
− Does not work in meta element

54

Important!

• CSP does not stop XSS, tries to mitigate its effects
− Similar to, e.g., the NX bit for stacks on x86/x64

55

How can we bypass CSP?

CSP – Bypasses

• Problem #1: User input at the trusted script

56

Problem #1: User Input

• What if the injection happens directly at nonced script
elements?

57

script-src ‘nonce-random123’ ‘strict-dynamic’;

<script nonce=“random123”>
script=document.createElement("script");
script.src = user_input + “valid.js";

 document.body.appendChild(script);
</script>

Problem #1: User Input

• What if the injection happens directly at nonced script
elements?

58

script-src ‘nonce-random123’ ‘strict-dynamic’;

<script nonce=“random123”>
script=document.createElement("script");
script.src = user_input + “valid.js";

 document.body.appendChild(script);
</script>

Attacker can inject
attacker.com

Executes on the
target origin

CSP Bypass: JSONP

• Any allowed site with JSONP endpoint is potentially dangerous
− E.g., https://allowed.com/jsonp?callback=“my malicious code
here”//

59

Recap: JSONP XSS Attacks

• What if an attacker has a change to inject some string value in the
JSONP URL?

60

App
weather.com
web server

weather.com/jsonp?callback=
 alert(‘xss’);read

alert(‘xss’);read([{
“temp”: 36
“location”: “ULSAN”
}])

https://vulnerable.com
<script>
 function read(json) {
 document.write(json.temp)
 }
</script>
<script
 src="http://weather.com/
 jsonp?callback=
 alert(‘xss’);read">
</script>

https://search.com/?query=cse467

CSP Bypass: Flash

• Not specifying object-src
− Flash can be allowed to access including site

61

<object nonce=“//evil.com/evil.swf”>
<param name=“allowscriptaccess” value = “always”>

</object>

Not an issue since Flash support was dropped. But
worth to remember for the future…

CSP – Bypasses

• Problem #1: User input at the trusted script

• Problem #2: Developer’s mistake/misconfiguration

62

• Developer’s mistake

−Typo in the first directive leads to the default-src directive being
missing from the policy (Content Security Problems?, CCS’16)

• Developer’s misconfiguration

−Defining CSP is hard!
−Many website developers just allow all of the inline script and all hosts
−94.72% of all website bypassible (e.g., misconfigured their CSP)

(CSP Is Dead, Long Live CSP!, CCS’2016)

63

defalt-src ’self’

default-src ‘unsafe-inline’ *

Problem #2: Developer’s Mistake/Misconfiguration

CSP Is Dead, Long Live CSP!, CCS’16

• The first in-depth analysis of the security of CSP deployments
across the web

64

CSP Is Dead, Long Live CSP!, CCS’16

• Among 1.6 billion unique URLs from 1 billion hostnames and
175 million top private domains,

− 3.9 billion URLs carried a CSP (3.7%)

• Collected 26,011 unique policies

65

CSP Is Dead, Long Live CSP!, CCS’16

• Among 1.6 million hosts, collected 26,011 unique policies
− 87% were to prevent XSS

66

CSP Is Dead, Long Live CSP!, CCS’16 67

• Among 1.6 million hosts, collected 26,011 unique policies
− 87% were to prevent XSS
− 94.72% were bypassable!

CSP Is Dead, Long Live CSP!, CCS’16 68

• XSS Policies: A policy that holds script-src or object-src directive
• Strict XSS Policies: A policy that does NOT hold unsafe directive

values including ‘unsafe-inline’ and * for whitelisting all hosts
• 94.72% is bypassible!

CSP – Bypasses

• Problem #1: User input at the trusted script

• Problem #2: Developer’s mistake/misconfiguration

• Problem #3: Browser bugs (CSP enforcement bugs)

69

Problem #3: Browser Bugs
• NOTE: CSP is enforced by the browser

70

Chrome

Well-defined CSP Execute attacker’s
JS code

<?php
header(“HTTP/: 100”);
header(“Content-Security-Policy: default-src ‘self’”)

?>
<script>alert(1)</script>

Chrome

Execute
JS code

Safari Firefox
✓ 𝘟Not execute

JS code 𝘟Not execute
JS code

Expected behavior:
Not execute JS code

DiffCSP, NDSS’2023

• The first testing framework that identifies browser bugs in CSP
enforcement regarding JS execution

71

(Ref) Finding CSP Enforcement

Specification for CSP: https://www.w3.org/TR/CSP3/

72

Chrome Developer

Implement

Specification
 for CSP

https://www.w3.org/TR/CSP3/

(Ref) Finding CSP Enforcement 73

Chrome Developer

(Incorrectly) Implement

Specification
 for CSP Buggy description

Misunderstand

Reason:

(Ref) Finding CSP Enforcement 74

Chrome Developer

(Incorrectly) Implement

Specification
 for CSP Buggy description

Misunderstand

Reason:

(Ref) Finding CSP Enforcement

Chrome Developer

(Incorrectly) Implement

Specification
 for CSP

Safari

Implement

Firefox

Implement

Our approach:
 Differential testing!

(Ref) Finding CSP Enforcement

Chrome

Specification
 for CSP

Safari

Firefox

Not
executed

Not
executed

Executed

Buggy description

Misunderstand

Due to…

Testing CSPs

Testing HTMLs

<script>attack()</script>
HTML

script-src benign.com
CSP

CVE-2020-6519

<iframe srcdoc=“<script>attack()</script>”></iframe>
CVE-2021-30538

<iframe src=“javascript:attack()”></iframe>

Block!

Allow!

Allow!

Executing JS Snippets in Diverse Ways 77

Our intuition: we can find bugs by
executing JS snippets in diverse ways

Known CSP bugs

HTML cheat sheet

XSS payloads

ECMAScript spec

Diverse ways of
executing JS snippets

78

Grammar-based Input Generation 78

HTML cheat sheet

<iframe onload=
 attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
 “<script>
 eval(‘attack()’)
 </script>”

Grammar

Testing HTMLs

Derive all known forms
of executing JS codes

[HTML]
Diverse ways of

executing JS snippets

[JS]

79

Grammar-based Input Generation 79

<iframe onload=
 attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
 “<script>
 eval(‘attack()’)
 </script>”

Grammar
[JS]

document.body.innerHTML+=
 “[HTML]”

Testing HTMLs

document.body.innerHTML+=
 “

 ”

Known CSP bugs
document.body.innerHTML+=
 “[HTML]”

[HTML]

Derive all known forms
of executing JS codes

HTML cheat sheet

80

Grammar-based Input Generation 80

<iframe onload=
 attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
 “<script>
 eval(‘attack()’)
 </script>”

Grammar
[JS]

document.body.innerHTML+=
 “[HTML]”

Testing HTMLs

 eval(‘ ’)

Known CSP bugs

[HTML]

Derive all known forms
of executing JS codes

HTML cheat sheet

eval(‘[JS]’) eval(‘[JS]’)

81

Grammar-based Input Generation 81

<iframe onload=
 attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
 “<script>
 eval(‘attack()’)
 </script>”

Grammar
[JS]

document.body.innerHTML+=
 “[HTML]”

Testing HTMLs

 attack()

Known CSP bugs

[HTML]

Derive all known forms
of executing JS codes

HTML cheat sheet

eval(‘[JS]’)

attack()

 attack() attack()

 attack()

82

Grammar-based Input Generation 82

<iframe onload=
 attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
 “<script>
 eval(‘attack()’)
 </script>”

Grammar
[JS]

document.body.innerHTML+=
 “[HTML]”

Testing HTMLs

Known CSP bugs

[HTML]

Derive all known forms
of executing JS codes

HTML cheat sheet

eval(‘[JS]’)

attack()

<iframe onload=
 >
</iframe>

<iframe onload=
 [JS]>
</iframe>

83

<iframe onload=
 [JS]>
</iframe>

Grammar-based Input Generation 83

<iframe onload=
 attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
 “<script>
 eval(‘attack()’)
 </script>”

Grammar
[JS]

document.body.innerHTML+=
 “[HTML]”

Testing HTMLs

Known CSP bugs

[HTML]

Derive all known forms
of executing JS codes

HTML cheat sheet

eval(‘[JS]’)

attack()

84

<iframe onload=
 [JS]>
</iframe>

 <script>

 </script>

<script>
 [JS]
</script>

 <script>
 [JS]
 </script>

Grammar-based Input Generation 84

<iframe onload=
 attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
 “<script>
 eval(‘attack()’)
 </script>”

Grammar
[JS]

document.body.innerHTML+=
 “[HTML]”

Testing HTMLs

Known CSP bugs

[HTML]

Derive all known forms
of executing JS codes

HTML cheat sheet

eval(‘[JS]’)

attack()

85

<iframe onload=
 [JS]>
</iframe>

 <script>

 </script>

<script>
 [JS]
</script>

Grammar-based Input Generation 85

HTML cheat sheet

<iframe onload=
 attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
 “<script>
 eval(‘attack()’)
 </script>”

Grammar
[JS]

[HTML]

document.body.innerHTML+=
 “[HTML]”

eval(‘[JS]’)

attack()

<iframe onload=
 [JS]>
</iframe>

<script>
 [JS]
</script>

<script>
 document.body.innerHTML+=
 “<iframe onload=
 eval(‘attack()’)>
 </iframe>”
</script>

Testing HTML #1

<iframe onload=
 eval(‘document.body.innerHTML+=
 “<script>
 attack()
 </script>”’)>
</iframe>

Testing HTML #2…

Testing HTML #NGenerate 25,880 HTML instances

Grammar-based Input Generation 86

CSP Generation

Generate 1,006 policies

script-src benign.com;
CSP

Keyword
none, unsafe-inline,
unsafe-eval, self,
strict-dynamic, unsafe-hashes

Host-source Self URL, Allowed URL, *
Schemes data:, blob:, http:, https:
Nonce-source nonce-123
Hash-source sha256-[HASH]

default-src,
script-src,
script-src-elem,
script-src-attr

87

(Ref) Finding CSP Enforcement

Chrome

Specification
 for CSP

Safari

Firefox

• Found 27 browser bugs in
Chrome, Safari, and FireFox

• …and three description bugs
• 23 bugs have been patched

(5,000$ rewards)
• Published in NDSS’23

Result

Not
executed

Not
executed

Executed
Testing CSPs

Testing HTMLs

Let’s Split HTMP and Code

• CSP is valuable and effective to mitigate XSS attacks
• Deploying CSP to legacy web applications is a painful and

difficult task

89

Why don’t we make a tool to
 automatically refactor the code?

=> deDacota, CCS ‘2013

deDacota, CCS ’2013

• Secure legacy web applications by automatically and statically
rewriting an application so that the code and data are separated

90

deDacota, CCS ’2013

• Input: ASP.NET web application
• Output: Transformed web application that writes inlined

JavaScript snippet to a file system

91

App
ASP.NET

web application

deDacota
(Revised)

App
ASP.NET

web application

Write(“<html>”)
Write(“<script>”)
Write(“inline()”)
Write(“</script>”)
Write(“</html>”)

Write(“<html>”)
Write(“<script

src=‘inline.js'>”)
Write(“</script>”)
Write(“</html>”) inline()

myscript.js

deDacota – Build an Graph

1. Identify all Write function and its constant string arguments
2. Identify the execution order of Write functions
3. Build an approximation graph

92

deDacota – Convert Web Application

1. From all possible execution path in a graph, finds lines that
emits <script> and </script>

2. Rewrites a program so that a string between <script> and
</script> can be stored in the session buffer

3. At the closing </script>, the stored string at the session is
written at a file

93

deDacota – Limitations

• deDacota changes the server application logic
− Auditing is hard whether the revised one is correct
− Execution overhead to write inlined JS code into files

• deDacota is unable to block XSS on the script snippets that are
dynamically changed by user inputs

− Separated files will contain injected payloads
− What is the point of having CSP if source JS file already contains the

payload?

• How about $script_starter = db_read();
write($script_starter)? Instead of write(“<script>”)

− False Negative

94

CSP – Other Use Cases 95

• Complex Security Policy?, NDSS ’20
− Document the evolution of CSP and its

use cases over time, showing its
gradual move away from content
restriction to other security goals

Recent Studies

- DiffCSP, NDSS ’23
- 12 angry developers, CCS ’21
- Complex security policy?, NDSS ’20
- CSP is dead, long live CSP!, CCS ’16
- Reining in the web with CSP, WWW ’10
- CCSP, USENIX Security ’17
- CSPAutoGen, CCS ’16

96

Conclusion

• Content Security Policy (CSP)
− Allow resources which are trusted by the developer

• Many research on generating CSPs, deploying CSPs, and
bypassing CSPs

• Even if CSP is deployed, very hard to get right
− >90% of all policies in study of CSS 2016 easily bypassable

• CSP is an improvement, but by no means of complete fix

97

Question?

