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HW1 Announcement
• Hacking practice: Capture the Flag (CTF)
• Challenge open (competition start): 3/22 (Fri)
• Due date (writeup report): 4/9 (Tue)

• CTF server: http://10.20.12.187:4000/
− This server can only be accessed from the UNIST internal network. 
− Please use a VPN to access from outside! Just log in to 

https://vpn.unist.ac.kr and turn on VPN.
− Only our class member can access to this website

• ID: [Your Student ID]@unist.ac.kr
• PW: [Your Student ID]
• You should change your password! (It is recommended to use 

random string)
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http://10.20.12.187:4000/
https://vpn.unist.ac.kr/


HW1 Announcement

• 10 Challenges
− SQL Injection, File Upload Vulnerabilities, XSS

• Each flag is in the following format: flag{[0-9a-f{32}]}
− e.g., flag{1a79a4d60de6718e8e5b326e338ae533} 

• Do not attack the CTF environments, including web services! 
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Current Status 4



Recap: Same Origin Policy (SOP) 5

https://attacker.com/attack.html

attacker.js

https://mail.unist.ac.kr

JavaScript runs with a 
https://attacker.com origin

Resources located at the
https://mail.unist.ac.kr origin

• Restricts scripts on one origin from accessing data from another 
origin

Any resource has 
its own origin

A JS runs with a origin cannot 
access other origin resources

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/


Recap: What is an Origin?

• Origin = Protocol + Domain Name + Port 
• Two URLs have the same origin if the protocol, domain name

(not subdomains), port are the same for both URLs
− All three must be equal origin to be considered the same
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Recap: Cross-Site Scripting (XSS)  

• A code injection attack
• Malicious scripts are injected into benign and trusted websites
• Injected codes are executed at the attacker’s target origin
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Recap: Cross-Site Scripting (XSS) 8

App
search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html> 
<body>
Search result for <?php echo $_GET[‘query’];?> 
<?php
// get results from DB and print them  

?>
</body>

</html> 

Search result for
1. Foo
…

The page search.com says:

hi

<html> 
  <body>
    Search result for <script>alert(‘hi’)</script>
    ...
  </body>
</html> 

Injected malicious codes 
are executed at the 

https://search.com origin

https://search.com/%3Fquery=%253cscript%253ealert(%E2%80%98hi%E2%80%99)%3B%253c/scriptdd


Recap: XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS) 

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS
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Recap: How to Prevent XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML
− Option 1-1: Implement your own sanitization logic (not recommended)

− Option 1-2: Use the good escaping libraries
§ E.g., htmlspecialchars(string), htmlentities(string), …

#2: Content Security Policy (CSP)
− A new security mechanism supported by modern browsers 

10

Today’s Topic!



Content Security Policy (CSP)



Content Security Policy (CSP)

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources
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13

https://seongil.com

App
Browser Server-side 

application

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

CSP Workflow

https://wsplab.com/


CSP Workflow 14

https://seongil.com

App
Browser Server-side 

application

HTTP/1.1 200OK
Server: Apache/1.3
Content-Security-Policy:

script-src ‘none’;

<script>
alert(‘XSS’)

</script> HTTP Response

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

e.g., due to reflected 
XSS attacks

https://wsplab.com/
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HTTP/1.1 200OK
Server: Apache/1.3
Content-Security-Policy:

script-src ‘none’;

<script>
alert(‘XSS’)

</script> https://seongil.com

Browser

CSP Workflow

HTTP Response

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

Servers declare 
trusted sources 

https://wsplab.com/
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HTTP/1.1 200OK
Server: Apache/1.3
Content-Security-Policy:

script-src ‘none’;

<script>
alert(‘XSS’)

</script> https://seongil.com

Browser
Enforce!

Block

CSP Workflow

HTTP Response

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

https://wsplab.com/


Example Policy on paypal.com

Demo: https://www.paypal.com/home

17

https://www.paypal.com/home


Content Security Policy (CSP)

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

• Disallow dangerous JS constructs like eval or event handlers
• Delivered as HTTP header or in meta element in page

− HTTP header: Content-Security-Policy: default-src …
− Meta element: <meta http-equiv=“Content-Security-Policy” 
content=“default-src…”>

• Enforced by the browser (all policies must be satisfied)
− Your browser must support CSP for its use

• First candidate recommendation in 2012, currently at Level 3

18



Browser Support 19



CSP Popularity 20

https://www.bitsight.com/blog/content-security-policy-limits-dangerous-activity-so-why-isnt-everyone-doing-it
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Format of CSP 21

Policy := [directive [value1];]...

A list of pairs of 
directive and values



ü Directive: script-src
• Specifically controls where scripts can be loaded from
• If provided, inline scripts and eval will not be allowed

ü Value: Many different ways to control sources
• ‘none’ – no scripts can be included from any host
• ‘self’ – only own origin
• https://domain.com – allow the script from this origin
• https://*.domain.com – any subdomain of domain.com, any 

script on them
• https: – any origin delivered via HTTPs
• ‘unsafe-inline’ / ‘unsafe-eval’ – reenables inline 

handlers and eval

22CSP Level 1 – Controlling Scripting Resources
Policy := [directive [value1];]...



CSP Level 1 – Example 23

script-src ‘self’ https://unist.ac.kr; 
CSP for website https://example.com:

HTML Execution
Allowed? 

<script src = “https://unist.ac.kr/myscript.js”></script>

<script src = “https://example.com/stuff.js”></script>

<script>alert(1)</script> // inline script

<script src = “https://ad.com/someads.js”></script>

Executes scripts only 
from the same origin and 

https://unist.ac.kr 

✓

✓

𝘟

𝘟



24CSP Level 1 – Controlling Additional Resources

• img-src, style-src, font-src, object-src, media-src
− Controls non-scripting resources: images, CSS, fonts, objects, 

audio/video 

• frame-src
− Controls from which origins frames may be added to a page

• connect-src
− Controls XMLHttpRequest, WebSockets (and other) connection targets

• default-src
− Serves as fallback for all fetch directives (all of the above)
− Only used when specific directive is absent 



CSP Level 1 – Exercise 25

default-src https://unist.ac.kr; script-src ‘unsafe-inline’;
img-src ‘self’

CSP for website https://example.com:

HTML Allowed? 

<script>alert(1)</script> // inline script

<img src=“https://example.com/logo.png”></img>

<iframe src=“youtube.com/video1”></script>

<script src = “https://unist.ac.kr/stuff.js”></script>



CSP Level 1 – Example and Limitations 27

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com

<script>
// … some required inline script
</script>

CSP for website https://example.com:

• will block any scripts added here

Content-Security-Policy: script-src ‘self’



CSP Level 1 – Example and Limitations 28

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com

<script>
// … some required inline script
</script>

CSP for website https://example.com:

• will block inline script
• … and script which was added by ad.com

Content-Security-Policy: script-src ‘self’ https://ad.com

JS from company.com 
will be rejected



CSP Level 1 – Example and Limitations 29

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com

<script>
// … some required inline script
</script>

CSP for website https://example.com:

• will block inline script

Content-Security-Policy: script-src ‘self’ https://ad.com
https://company.com 



CSP Level 1 – Example and Limitations 30

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com

<script>
// … some required inline script
</script>

CSP for website https://example.com:

• will allow inline script

Content-Security-Policy: script-src ‘self’ https://ad.com
https://company.com ‘unsafe-inline’ 



CSP Level 1 – Example and Limitations 31

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com
<script>// XSS attack!</script>
<script>
// … some required inline script
</script>

CSP for website https://example.com:

• will allow inline script
• … but allow XSS injection

Content-Security-Policy: script-src ‘self’ https://ad.com
https://company.com ‘unsafe-inline’ 

We need to avoid the 
use of ‘unsafe-inline’



CSP Level 1 – Example and Limitations 32

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com
<script src =
  “https://example.com/myinlinescript.js”></script>

CSP for website https://example.com:

• requires removing inline script and converting it into an external 
script

Content-Security-Policy: script-src ‘self’ https://ad.com
https://company.com



CSP Level 1 – Example and Limitations 33

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com
<script src =
  “https://example.com/myinlinescript.js”></script>
<button onclick=“meaningful()”>Click me</button>

CSP for website https://example.com:

• removing onclick handler is painful…

Content-Security-Policy: script-src ‘self’ https://ad.com
https://company.com



CSP Level 1 – Example and Limitations 34

<script src = “https://ad.com/someads.js”></script>
// ad.com will add stuff from company.com
<script src =
  “https://example.com/myinlinescript.js”></script>
<button id=meaningful()>Click me</button>
<script src = 
  “https://example.com/eventhandler.js”></script> 

CSP for website https://example.com:

• finally!

Content-Security-Policy: script-src ‘self’ https://ad.com
https://company.com

var button = document.getElementById(“meaningful”);
button.onclick = meaningful;



CSP Level 1 – Limitations

• If our goal is to allow scripts from own origin and inline scripts
− Solution: script-src ‘self’ ‘unsafe-inline’

• Problem: bypasses literally any protection
− Attacker can inject inline JavaScript

• One possible solution: removing inline script and converting it 
into an external script

35

<script>
  alert(1)
</script> 

alert(1)For each inline script…
converting <script src=“myscript.js”>

</script> 
myscript.js

Problem: Removing inline script is painful



CSP Level 2 – Nonces and Hashes

• Proposed improvement in CSP Level 2: nonces and hashes
• Allows every inline script adds nonce property

−script-src ‘nonce-$value’ ‘self’

• Allows inline scripts based on their SHA hash (SHA256, 
SHA384, or SHA512)

−script-src ‘sha256-$hash’ ‘self’

36



CSP Level 2 – Example 37

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53' 'sha256-
5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c' 

<script>
alert(“My hash is correct”)
</script> 

<script>
alert(“incorrect”)
</script> 

SHA256 hash value: 
5bf5c8f91b8c6adde74da363ac497d5ac19

e4595fe39cbdda22cec8445d3814c 



CSP Level 2 – Example 38

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53' 'sha256-
5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c' 

<script>
alert(“My hash is correct”)
</script> 

<script>
alert(“incorrect”)
</script> 

✓ 𝘟

SHA256 matches 
value of CSP header

SHA256 does not 
match



CSP Level 2 – Example 39

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53' 'sha256-
5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c' 

<script>
alert(“My hash is correct”)
</script> 

✓

SHA256 matches 
value of CSP header

SHA256 does not match
(whitespaces matter)

<script>
  alert(“My hash is correct”)
</script> 

𝘟



CSP Level 2 – Example 40

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53' 'sha256-
5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c' 

<script nonce=“d90e0153c074f6c3fcf53”>
alert(“It’s all good”)
</script> 

<script nonce=“nocluehackplz”>
alert(“I will not work”)
</script> ✓ 𝘟

Script nonce matches 
CSP header

Script nonce does not 
match CSP header



CSP Level 2 – Additional Changes

• child-src
− Deprecates frame-src, also valid for Web Workers

• base-uri
− Controls whether <base> can be used and what it can be set to

• form-action
− Ensured that forms may only be sent to specific targets
− Does not fall back to default-src if not specified

41



CSP Level 2 – Limitations 42

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53'

<script nonce=“d90e0153c074f6c3fcf53”>
script=document.createElement("script");
script.src = "http://ad.com/ad.js";

  document.body.appendChild(script); 
</script> 

Does this script work under a 
nonce-based policy? No!

Add new script element 
without nonce



• Additional changes: add strict-dynamic
−Allows adding scripts programmatically, eases CSP 

deployment in, e.g., ad scenario

• Mostly due to dynamic ADs
−1st page load: script from ads.com → fancy-cars.com
−2nd page load: script from ads.com → cheap-ads.net → 

dealsdeals.biz

• Idea: propagate trust
−If we trust ads.com, let’s also trust whoever ads.com load 

script from

43Changes from Level 2 to Level 3: strict-dynamic



CSP Level 3 – strict-dynamic Example 44

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53’ ‘strict-dynamic’

<script nonce=“d90e0153c074f6c3fcf53”>
script=document.createElement("script");
script.src = "http://ad.com/ad.js";

  document.body.appendChild(script); 
</script> 

Propagate trust: we also trust this 
script, so we allow it to execute

We trust this script



• Additional changes: add strict-dynamic
−Allows adding scripts programmatically, eases CSP 

deployment in, e.g., ad scenario

• Not “parser-inserted”

45Changes from Level 2 to Level 3: strict-dynamic



CSP Level 3 – strict-dynamic 46

script-src ‘nonce-d90e0153c074f6c3fcf53’ ‘strict-dynamic' 

<script nonce=“d90e0153c074f6c3fcf53”>
  script = 
     document.createElement(“script”);
  script.src = “http://ad.com/ad.js”;
  document.body.appendChild(script);
</script> 

<script nonce=“d90e0153c074f6c3fcf53”>
  document.write(“<script 
   src = “http://ad.com/ad.js”>

</script>”)
</script> 

✓ 𝘟
appendChild is not 

“parser-inserted”
document.write is

“parser-inserted”



• Additional changes: add strict-dynamic
−Allows adding scripts programmatically, eases CSP 

deployment in, e.g., ad scenario

• Not “parser-inserted”

• Disables list of allowed hosts (such as ‘self’ and 
‘unsafe-inline’)

47Changes from Level 2 to Level 3: strict-dynamic



CSP Level 3 – Additional Changes

• frame-src undeprecated
− Worker-src added to control workers specifically
− Both fall back to child-src if absent (which falls back to default-src)

• manifest-src
− Controls from where AppCache manifests can be loaded

48



CSP Level 3 – Backwards Compatibility 49

script-src https://ad.com ‘unsafe-inline’
‘nonce-d90e0153c074f6c3fcf53’ ‘strict-dynamic' 

<script nonce=“d90e0153c074f6c3fcf53”>
  script = document.createElement(“script”);
  script.src = “http://ad.com/ad.js”;
  document.body.appendChild(script);
</script> 



CSP Level 3 – Backwards Compatibility 50

script-src https://ad.com ‘unsafe-inline’
‘nonce-d90e0153c074f6c3fcf53’ ‘strict-dynamic' 

<script nonce=“d90e0153c074f6c3fcf53”>
  script = document.createElement(“script”);
  script.src = “http://ad.com/ad.js”;
  document.body.appendChild(script);
</script> 

Modern browser
(CSP Level 3)

Ignores unsafe-inline 
and allowed hosts



CSP Level 3 – Backwards Compatibility 51

script-src https://ad.com ‘unsafe-inline’
‘nonce-d90e0153c074f6c3fcf53’ ‘strict-dynamic' 

<script nonce=“d90e0153c074f6c3fcf53”>
  script = document.createElement(“script”);
  script.src = “http://ad.com/ad.js”;
  document.body.appendChild(script);
</script> 

Modern browser
(CSP Level 3)

Old browser
(CSP Level 1)

Ignores unsafe-inline 
and allowed hosts

Ignores strict-dynamic and 
nonce, executes script through 
unsafe-inline and allowed hosts



CSP – Composition

• Browser always enforces all observed CSPs
− Hence, CSP can never be relaxed, only tightened

• Useful for combatting XSS and restricting hosts at the same time
− Idea: send two CSP headers, both will have to applied

§ Policy 1: script-src ‘nonce-random’
§ Policy 2: script-src ‘self’ https://cdn.com

− Only nonced scripts can be executed (policy 1)
− Only scripts from own origin and CDN can be executed (policy 2)
− Result: only scripts that carry a nonce and are hosted on origin/CDN are 

allowed

52



CSP – Reporting Functionality

• report-uri <url>
− Sends JSON report to specified URL

• report-to <endpoint>
− Requires separate definition through Report-To HTTP header

53



CSP – Report Only Mode

• Implementation of CSP is a tedious process 
− Removal of all inline scripts and usage of eval
− Tricky when depending on third-party providers

§ E.g., advertisement includes random script (due to real-time bidding)

• Restrictive policy might break functionality
− Remember: client-side enforcement
− Need for (non-breaking) feedback channel to developers

• Content-Security-Policy-Report-Only
− default-src ….; report=uri /violations.php
− Allows to field-test without breaking functionality (reports current URL 

and causes for fail)
− Does not work in meta element

54



Important!

• CSP does not stop XSS, tries to mitigate its effects
− Similar to, e.g., the NX bit for stacks on x86/x64

55

How can we bypass CSP?



CSP – Bypasses

• Problem #1: User input at the trusted script

56



Problem #1: User Input

• What if the injection happens directly at nonced script 
elements?

57

script-src ‘nonce-random123’ ‘strict-dynamic’; 

<script nonce=“random123”>
script=document.createElement("script");
script.src = user_input + “valid.js";

  document.body.appendChild(script); 
</script> 



Problem #1: User Input

• What if the injection happens directly at nonced script 
elements?

58

script-src ‘nonce-random123’ ‘strict-dynamic’; 

<script nonce=“random123”>
script=document.createElement("script");
script.src = user_input + “valid.js";

  document.body.appendChild(script); 
</script> 

Attacker can inject 
attacker.com

Executes on the 
target origin



CSP Bypass: JSONP

• Any allowed site with JSONP endpoint is potentially dangerous
− E.g., https://allowed.com/jsonp?callback=“my malicious code 
here”//

59



Recap: JSONP XSS Attacks

• What if an attacker has a change to inject some string value in the 
JSONP URL? 

60

App
weather.com
web server

weather.com/jsonp?callback= 
       alert(‘xss’);read
 
alert(‘xss’);read([{ 
“temp”: 36 
“location”: “ULSAN” 
}]) 

https://vulnerable.com
<script> 
  function read(json) { 
    document.write(json.temp) 
  }
</script>
<script
  src="http://weather.com/
        jsonp?callback=
        alert(‘xss’);read">
</script> 

https://search.com/?query=cse467


CSP Bypass: Flash

• Not specifying object-src
− Flash can be allowed to access including site

61

<object nonce=“//evil.com/evil.swf”>
<param name=“allowscriptaccess” value = “always”>

</object> 

Not an issue since Flash support was dropped. But 
worth to remember for the future…



CSP – Bypasses

• Problem #1: User input at the trusted script

• Problem #2: Developer’s mistake/misconfiguration

62



• Developer’s mistake

−Typo in the first directive leads to the default-src directive being 
missing from the policy (Content Security Problems?, CCS’16)

• Developer’s misconfiguration

−Defining CSP is hard!
−Many website developers just allow all of the inline script and all hosts
−94.72% of all website bypassible (e.g., misconfigured their CSP)

(CSP Is Dead, Long Live CSP!, CCS’2016)

63

defalt-src ’self’

default-src ‘unsafe-inline’ *

Problem #2: Developer’s Mistake/Misconfiguration 



CSP Is Dead, Long Live CSP!, CCS’16

• The first in-depth analysis of the security of CSP deployments 
across the web

64



CSP Is Dead, Long Live CSP!, CCS’16

• Among 1.6 billion unique URLs from 1 billion hostnames and 
175 million top private domains,

− 3.9 billion URLs carried a CSP (3.7%)

• Collected 26,011 unique policies

65



CSP Is Dead, Long Live CSP!, CCS’16

• Among 1.6 million hosts, collected 26,011 unique policies
− 87% were to prevent XSS

66



CSP Is Dead, Long Live CSP!, CCS’16 67

• Among 1.6 million hosts, collected 26,011 unique policies
− 87% were to prevent XSS
− 94.72% were bypassable!



CSP Is Dead, Long Live CSP!, CCS’16 68

• XSS Policies: A policy that holds script-src or object-src directive
• Strict XSS Policies: A policy that does NOT hold unsafe directive 

values including ‘unsafe-inline’ and * for whitelisting all hosts
• 94.72% is bypassible!



CSP – Bypasses

• Problem #1: User input at the trusted script

• Problem #2: Developer’s mistake/misconfiguration

• Problem #3: Browser bugs (CSP enforcement bugs) 

69



Problem #3: Browser Bugs
• NOTE: CSP is enforced by the browser

70

Chrome

Well-defined CSP Execute attacker’s 
JS code

<?php
header(“HTTP/: 100”);
header(“Content-Security-Policy: default-src ‘self’”)

?>
<script>alert(1)</script>

Chrome

Execute 
JS code

Safari Firefox
✓ 𝘟Not execute 

JS code 𝘟Not execute 
JS code

Expected behavior:
Not execute JS code



DiffCSP, NDSS’2023

• The first testing framework that identifies browser bugs in CSP 
enforcement regarding JS execution

71



(Ref) Finding CSP Enforcement

Specification for CSP: https://www.w3.org/TR/CSP3/

72

Chrome Developer

Implement

Specification 
    for CSP

https://www.w3.org/TR/CSP3/


(Ref) Finding CSP Enforcement 73

Chrome Developer

(Incorrectly) Implement

Specification 
    for CSP Buggy description

Misunderstand

Reason:



(Ref) Finding CSP Enforcement 74

Chrome Developer

(Incorrectly) Implement

Specification 
    for CSP Buggy description

Misunderstand

Reason:



(Ref) Finding CSP Enforcement

Chrome Developer

(Incorrectly) Implement

Specification 
    for CSP

Safari

Implement

Firefox

Implement

Our approach:
 Differential testing!



(Ref) Finding CSP Enforcement

Chrome

Specification 
    for CSP

Safari

Firefox

Not 
executed

Not 
executed

Executed

Buggy description

Misunderstand

Due to…

Testing CSPs

Testing HTMLs



<script>attack()</script> 
HTML

script-src benign.com
CSP 

CVE-2020-6519

<iframe srcdoc=“<script>attack()</script>”></iframe> 
CVE-2021-30538

<iframe src=“javascript:attack()”></iframe> 

Block!

Allow!

Allow!

Executing JS Snippets in Diverse Ways 77

Our intuition: we can find bugs by
executing JS snippets in diverse ways



Known CSP bugs

HTML cheat sheet

XSS payloads

ECMAScript spec

Diverse ways of 
executing JS snippets

78

Grammar-based Input Generation 78



HTML cheat sheet

<iframe onload=
  attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
  “<script>
     eval(‘attack()’)
   </script>”

Grammar

Testing HTMLs

Derive all known forms 
of executing JS codes

[HTML]
Diverse ways of 

executing JS snippets

[JS]

79

Grammar-based Input Generation 79



<iframe onload=
  attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
  “<script>
     eval(‘attack()’)
   </script>”

Grammar
[JS]

document.body.innerHTML+=
  “[HTML]”

Testing HTMLs

document.body.innerHTML+=
  “
     
            ”

Known CSP bugs
document.body.innerHTML+=
  “[HTML]”

[HTML]

Derive all known forms 
of executing JS codes

HTML cheat sheet
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<iframe onload=
  attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
  “<script>
     eval(‘attack()’)
   </script>”

Grammar
[JS]

document.body.innerHTML+=
  “[HTML]”

Testing HTMLs

     eval(‘        ’)

Known CSP bugs

[HTML]

Derive all known forms 
of executing JS codes

HTML cheat sheet

eval(‘[JS]’)     eval(‘[JS]’)
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<iframe onload=
  attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
  “<script>
     eval(‘attack()’)
   </script>”

Grammar
[JS]

document.body.innerHTML+=
  “[HTML]”

Testing HTMLs

           attack()

Known CSP bugs

[HTML]

Derive all known forms 
of executing JS codes

HTML cheat sheet

eval(‘[JS]’)      

attack()

  attack()  attack()

           attack()
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<iframe onload=
  attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
  “<script>
     eval(‘attack()’)
   </script>”

Grammar
[JS]

document.body.innerHTML+=
  “[HTML]”

Testing HTMLs

Known CSP bugs

[HTML]

Derive all known forms 
of executing JS codes

HTML cheat sheet

eval(‘[JS]’)      

attack()

<iframe onload=
  >
</iframe>

<iframe onload=
  [JS]>
</iframe>
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<iframe onload=
  [JS]>
</iframe>
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<iframe onload=
  attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
  “<script>
     eval(‘attack()’)
   </script>”

Grammar
[JS]

document.body.innerHTML+=
  “[HTML]”

Testing HTMLs

Known CSP bugs

[HTML]

Derive all known forms 
of executing JS codes

HTML cheat sheet

eval(‘[JS]’)      

attack()
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<iframe onload=
  [JS]>
</iframe>

   <script>
     
   </script>

<script>
  [JS]
</script>

   <script>
   [JS]  
   </script>
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<iframe onload=
  attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
  “<script>
     eval(‘attack()’)
   </script>”

Grammar
[JS]

document.body.innerHTML+=
  “[HTML]”

Testing HTMLs

Known CSP bugs

[HTML]

Derive all known forms 
of executing JS codes

HTML cheat sheet

eval(‘[JS]’)      

attack()
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<iframe onload=
  [JS]>
</iframe>

   <script>
     
   </script>

<script>
  [JS]
</script>
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HTML cheat sheet

<iframe onload=
  attack()>
</iframe>

Known CSP bugs
document.body.innerHTML+=
  “<script>
     eval(‘attack()’)
   </script>”

Grammar
[JS]

[HTML]

document.body.innerHTML+=
  “[HTML]”

eval(‘[JS]’)

attack()

<iframe onload=
  [JS]>
</iframe>

<script>
  [JS]
</script>

<script>
  document.body.innerHTML+=
    “<iframe onload=
       eval(‘attack()’)>
     </iframe>”
</script>

Testing HTML #1

<iframe onload=
  eval(‘document.body.innerHTML+=
    “<script>
       attack()
     </script>”’)>
</iframe>

Testing HTML #2…

Testing HTML #NGenerate 25,880 HTML instances
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CSP Generation

Generate 1,006 policies

script-src  benign.com;
CSP 

Keyword
none, unsafe-inline,
unsafe-eval, self,
strict-dynamic, unsafe-hashes

Host-source Self URL, Allowed URL, *
Schemes data:, blob:, http:, https:
Nonce-source nonce-123
Hash-source sha256-[HASH]

default-src, 
script-src, 
script-src-elem, 
script-src-attr
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(Ref) Finding CSP Enforcement

Chrome

Specification 
    for CSP

Safari

Firefox

• Found 27 browser bugs in 
Chrome, Safari, and FireFox

• …and three description bugs
• 23 bugs have been patched 

(5,000$ rewards)
• Published in NDSS’23

Result

Not 
executed

Not 
executed

Executed
Testing CSPs

Testing HTMLs



Let’s Split HTMP and Code

• CSP is valuable and effective to mitigate XSS attacks
• Deploying CSP to legacy web applications is a painful and 

difficult task

89

Why don’t we make a tool to
 automatically refactor the code?

=> deDacota, CCS ‘2013 



deDacota, CCS ’2013

• Secure legacy web applications by automatically and statically 
rewriting an application so that the code and data are separated
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deDacota, CCS ’2013

• Input: ASP.NET web application 
• Output: Transformed web application that writes inlined

JavaScript snippet to a file system

91

App
ASP.NET 

web application 

deDacota
(Revised)

App
ASP.NET 

web application 

Write(“<html>”)
Write(“<script>”)
Write(“inline()”)
Write(“</script>”)
Write(“</html>”)

Write(“<html>”)
Write(“<script 

src=‘inline.js'>”)
Write(“</script>”)
Write(“</html>”) inline()

myscript.js



deDacota – Build an Graph

1. Identify all Write function and its constant string arguments
2. Identify the execution order of Write functions
3. Build an approximation graph
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deDacota – Convert Web Application

1. From all possible execution path in a graph, finds lines that 
emits <script> and </script>

2. Rewrites a program so that a string between <script> and 
</script> can be stored in the session buffer

3. At the closing </script>, the stored string at the session is 
written at a file
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deDacota – Limitations

• deDacota changes the server application logic
− Auditing is hard whether the revised one is correct
− Execution overhead to write inlined JS code into files

• deDacota is unable to block XSS on the script snippets that are 
dynamically changed by user inputs

− Separated files will contain injected payloads
− What is the point of having CSP if source JS file already contains the 

payload?

• How about $script_starter = db_read(); 
write($script_starter)? Instead of write(“<script>”)

− False Negative
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CSP – Other Use Cases 95

• Complex Security Policy?, NDSS ’20
− Document the evolution of CSP and its 

use cases over time, showing its 
gradual move away from content 
restriction to other security goals



Recent Studies

- DiffCSP, NDSS ’23
- 12 angry developers, CCS ’21
- Complex security policy?, NDSS ’20
- CSP is dead, long live CSP!, CCS ’16
- Reining in the web with CSP, WWW ’10
- CCSP, USENIX Security ’17
- CSPAutoGen, CCS ’16
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Conclusion

• Content Security Policy (CSP)
− Allow resources which are trusted by the developer

• Many research on generating CSPs, deploying CSPs, and 
bypassing CSPs

• Even if CSP is deployed, very hard to get right
− >90% of all policies in study of CSS 2016 easily bypassable

• CSP is an improvement, but by no means of complete fix
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Question?


