
8. Clickjacking & XS-Leaks

Seongil Wi

Department of Computer Science and Engineering

CSE610: Web Programming &
Security

Paper Presentation

• Presentation Time: 30 mins (+ QnA 5 mins)
• Check your presentation date on the website!

• Evaluation:
− Organization/clarity
− Quality of you criticism (You should present your opinion!)
− Presentation skills
+ Participation points will be awarded to students asking valuable
questions!

• You should start presentation with a summary of the paper
− Problem, Goal, Contribution, and Evaluation

2

Midterm Exam

• April. 18 (Thursday)
• Class Time (1h 15m)

• Descriptive type questions

3

Project Checkpoint Report

• Due: April. 26 (Friday), 11:59 PM

• You should upload a single PDF file on BlackBored
− If your team consists of two people, each member must submit a PDF

file

• Add the progress made thus far in your proposal
− You must write your progress/modified part in blue font

• The quantity and quality of progress will also be evaluated, so
please write carefully!

4

Clickjacking

Recap: Browser Execution Model

• Windows may contain frames from different sources
−Frame: rigid visible division
−iFrame: floating inline frame

6

<iframe src=“b.com”>
</iframe>

Framing other Websites

• HTML supports framing of other (cross-origin sites)
− E.g., iframes
− Very useful feature for advertisement, like buttons, …

• Embedding site controls most of the frame’s properties
− How large the frame should be
− Where the frame is displayed
− How opaque the frame should be….

7

What could go wrong?

Clickjacking (UI Redressing)
• Attacker overlays transparent or opaque frames to trick a

user into clicking on a button or link on another page

8

https://attacker.com/attack.html

victim

Play the game!

<iframe src=‘https://bank.com/payment’>
</iframe>

https://websec-lab.com/cse467.html

Clickjacking (UI Redressing)
• Attacker overlays transparent or opaque frames to trick a

user into clicking on a button or link on another page

9

https://attacker.com/attack.html

victim

Play the game!

<iframe src=‘https://bank.com/payment’>
</iframe>

https://websec-lab.com/cse467.html

Clickjacking (UI Redressing)
• Attacker overlays transparent or opaque frames to trick a

user into clicking on a button or link on another page

10

https://attacker.com/attack.html

victim

Play the game!

<iframe src=‘https://bank.com/payment’>
</iframe>

HTML attributes
style opacity:0.5

https://websec-lab.com/cse467.html

Clickjacking (UI Redressing)
• Attacker overlays transparent or opaque frames to trick a

user into clicking on a button or link on another page

11

https://attacker.com/attack.html

victim

Play the game!

<iframe src=‘https://bank.com/payment’>
</iframe>

HTML attributes
style opacity:0

Victim will send
money!

https://websec-lab.com/cse467.html

Clickjacking Demo

• Demo: https://websec-lab.github.io/courses/2024s-
cse610/demo/demo5.html

12

https://websec-lab.github.io/courses/2024s-cse610/demo/demo5.html
https://websec-lab.github.io/courses/2024s-cse610/demo/demo5.html

Clickjacking – Hiding the Target Element

• Use CSS opacity property and z-index property

13

Make other element
float under the target

element

Hide target element

Cursor Spoofing

• Use CSS cursor property and JavaScript to simulate a fake
cursor icon on the screen

14

Real cursor icon Fake cursor icon

Cursor Spoofing

• Use CSS cursor property and JavaScript to simulate a fake
cursor icon on the screen

15

Real cursor icon Fake cursor icon

Hide real curson icon
by using cursor: none

Cursor Spoofing 16

Double-Click Attack 17

• Bait the user to perform a double-click
− After the first click, the target window pops up
− After the second click, permission is allowed

Permission
is allowedFirst

click
Second

click

Whack-a-mole Attack 18

• Ask the user to click as fast as possible, suddenly switch
Facebook like button

− Combine the approaches from the cursor spoofing and double-click
attack

Clickjacking, USENIX SEC’12

• Evaluate the effectiveness of attack techniques

19

Clickjacking, USENIX SEC’12

• Evaluate the effectiveness of attack techniques
− Cursor-spoofing attack: 31/72 (43%)
− Double-click attack: 43/90 (47%)
− Whack-a-mole attack: 80/84 (98%)

20

How to Mitigate Clickjacking?

1. Frame busting

21

• Make sure that my website is not loaded in an enclosing frame

22Clickjacking Defense: Frame Busting

if (top != self)
 top.location = self.location

JS

https://attacker.com/attack.html

<iframe src=‘https://bank.com/payment’>
</iframe>

https://bank.com/payment

top.location

self.location

https://websec-lab.com/cse467.html
https://bank.com/payment

• Make sure that my website is not loaded in an enclosing frame

23Clickjacking Defense: Frame Busting

https://attacker.com/attack.html

<iframe src=‘https://bank.com/payment’>
</iframe>

https://bank.com

top.location

self.location

if (top != self)
 top.location = self.location

JS

SOP violation?
Only frame busting will be affected by exception…

https://websec-lab.com/cse467.html
https://bank.com/

Busting Frame Busting, W2SP’10

• Analyze frame busting code from Alexa Top 500 and all US
banks

24

Busting Frame Busting, W2SP’10

• Analyze frame busting code from Alexa Top 500 and all US
banks

25

Busting Frame Busting, W2SP’10

• Analyze frame busting code from Alexa Top 500 and all US
banks

26

Busting Frame Busting, W2SP’10

• Analyze frame busting code from Alexa Top 500 and all US
banks

27

Busting Frame Busting, W2SP’10

• Analyze frame busting code from Alexa Top 500 and all US
banks

• Show that all frame busting code is broken

28

Broken Frame Buster: Walmart 29

if (top.location != location) {
 if (document.referrer &&
 document.referrer.indexOf("walmart.com") == -1) {
 top.location.replace(document.location.href);
 }
}

https://attacker.com/walmart.com.html

walmart.com

30Broken Frame Buster:

if (window.self != window.top &&
 !document.referer.match(/https?:\/\/[^?\/]+\.nytimes\.com\//)) {
 self.location = top.location;
}

http://www.attacker.com/a.html?b=https://www.nytimes.com/

www.nytimes.com

How to Mitigate Clickjacking?

1. Frame busting

2. X-Frame-Options

33

• Non-standardized (hence the X-), yet widely adopted header
− Introduced in 2009
− Has an RFC since 2013 (RFC7034)

• Depending on the browser, two or three options exist
− DENY: deny any framing whatsoever
− SAMEORIGIN: only allow framing the same origin

§ depending on browser, same origin as top page or as parent page
− ALLOW-FROM: single allowed domain (obsolete feature)

• ~25% adoption on the web in 2017

34Clickjacking Defense: X-Frame-Options

How to Mitigate Clickjacking?

1. Frame busting

2. X-Frame-Options

3. CSP frame-ancestors

35

• CSP introduced frame-ancestors in version 2 (Standard!)
− Meant to replace non-standardized X-Frame-Options
− Deprecates X-Frame-Options

• Determine whether my website may be embedded in another
site

− ‘none’: denies from any host
− ‘self’: allows only from same origin
− http://example.org: allows specific origin

• As of Sep. 2020, approximately 8.5% of top 10k sites with
frame-ancestors

− Comparison: 37% make
use of X-Frame-Options

36Clickjacking Defense: CSP's frame-ancestors

Complex Security Policy?,
NDSS ’20

Cross-site Leaks (XS-Leaks)

Cross-Site Leaks (XS-Leaks)

• Steal the state (privacy information) of a victim from cross website
− Login status (determine if the victim is logged in or not)
− Visit status (determine if the victim has been visited or not)
− …

38

XS-Leaks Example 39https://portal.unist.ac.kr

Victim’s status:
not logged inAttacker’s goal:

Determine whether the victim is
logged in or not on portal.unist.ac.kr https://portal.unist.ac.kr

Victim’s status:
logged in

XS-Leaks Example 40

https://www.attacker.com

https://portal.unist.ac.kr

https://portal.unist.ac.kr

Victim’s status:
not logged in

<iframe
 src=https://portal.unist.ac.kr/>
</iframe>

<script>
 if (“Announcement” in frames[0].content)
 // logged in
 else
 // not logged in
</script>

Victim’s status:
logged in

Is it possible?

https://portal.unist.ac.kr/

XS-Leaks Example 41

https://www.attacker.com

https://portal.unist.ac.kr

https://portal.unist.ac.kr

Victim’s status:
not logged in

<iframe
 src=https://portal.unist.ac.kr/>
</iframe>

<script>
 if (“Announcement” in frames[0].content)
 // logged in
 else
 // not logged in
</script>

Victim’s status:
logged in

Is it possible?Result in a DOMException due to the
same-origin policy

https://portal.unist.ac.kr/

Recall: SOP Goals

• Safe to visit an evil website

• Safe to visit two pages at the same time
− Address bar distinguishes them

• Allow safe delegation

42

XS-Leaks Example 43

https://www.attacker.com

https://portal.unist.ac.kr

https://portal.unist.ac.kr

Victim’s status:
not logged in

Victim’s status:
logged in

 onload = “alert(‘logged-in’)”
 onerror = “alert(‘not logged-in’)”

State-dependent URL

401 Unauthorized

200 Ok

XS-Leaks Example 44

https://www.attacker.com

https://portal.unist.ac.kr

https://portal.unist.ac.kr

Victim’s status:
not logged in

Victim’s status:
logged in

 onload = “alert(‘logged-in’)”
 onerror = “alert(‘not logged-in’)”

State-dependent URL

401 Unauthorized

200 OkNow, the web attacker
will know whether the

victim is logged in or not

XS-Leaks Example – gitlab 45

let url = ‘https://git.company.com/profile’
let ref = window.open(url, ‘_blank’)
// wait until pop-up is loaded let
counted_frames = ref.window.length;
if (counted_frames === 0) {
 // User is logged in
} else if (counted_frames === 3) {
 // User is NOT logged in
}

45

XS-Leaks Example – gitlab 46

let url = ‘https://git.company.com/profile’
let ref = window.open(url, ‘_blank’)
// wait until pop-up is loaded let
counted_frames = ref.window.length;
if (counted_frames === 0) {
 // User is logged in
} else if (counted_frames === 3) {
 // User is NOT logged in
}

46

XS-Leaks Example: HotCRP Reviewer Deanonymize47

<link href=‘https://ndss.hotcrp.com/api.php/review?p=123’
 rel=‘prefetch’
 onload = alert(‘reviewer’)
 onerror = alert(‘not reviewer’) />

Chrome

Allow
XS-Leaks

Safari Firefox

Prevent
XS-Leaks

The Leaky Web, S&P'2023

• Detect and characterize 280 observation channels that leak
information cross-site in the engines of Chromium, Firefox, and
Safari

48

How to Mitigate XS-Leaks?

• SameSite Cookies
− Prevent the browser from sending the cookie in cross-site request
− Disable state-dependent URL whose responses are based on

states saved in cookies

• X-Frame Options header

• Cross-Origin-Opener-Policy (COOP) header: Make sure
that my website is not opened on cross website

49

Question?

