
9. Browser Extensions & Phishing

Seongil Wi

Department of Computer Science and Engineering

CSE610: Web Programming &
Security

Browser Extension 2

What is a Browser Extension?

• A software that allows you to customize your web
browser/website

− Add extra features

Image from https://chromewebstore.google.com/detail/custom-cursor-for-
chrome/ogdlpmhglpejoiomcodnpjnfgcpmgale

3

https://chromewebstore.google.com/detail/custom-cursor-for-chrome/ogdlpmhglpejoiomcodnpjnfgcpmgale
https://chromewebstore.google.com/detail/custom-cursor-for-chrome/ogdlpmhglpejoiomcodnpjnfgcpmgale

Popularity of Extensions

• 93% of enterprise companies use browser extensions
• 130,445 extensions are available for Chrome (2024)

https://www.pixiebrix.com/reports/state-of-browser-extensions-2023

4

https://www.pixiebrix.com/reports/state-of-browser-extensions-2023

Unfortunately…

• There are lots of vulnerable or malicious extensions

5

Browser Extensions - Structure Overview

• A browser extension consists of three components:
background pages, content scripts, and permissions

6

• Background Pages: define the
behavior of the extension

− Do not have any visibility to the user

• Content Scripts: JavaScript
files that runs in the context of a
web page

• Permissions: permissions to
access the different parts of the
extension API

Manifest File 7

"background": {
 "scripts": ["background.js"]
},

"content_scripts": [{
 "matches": ["http://www.google.com/*"],
 "css": ["mystyle.css"]
 "js": ["jquery.js", "myscript.js"]
}],

"permissions": [
 "bookmakrs",
 "*://*.facebook.com/",
 "https://www.google.com/"
],
...

Defines extension
properties

• Background Pages: define the
behavior of the extension

− Do not have any visibility to the user

• Content Scripts: JavaScript
files that runs in the context of a
web page

• Permissions: permissions to
access the different parts of the
extension API

Background Pages 8

"background": {
 "scripts": ["background.js"]
},

"content_scripts": [{
 "matches": ["http://www.google.com/*"],
 "css": ["mystyle.css"]
 "js": ["jquery.js", "myscript.js"]
}],

"permissions": [
 "bookmakrs",
 "*://*.facebook.com/",
 "https://www.google.com/"
],
...

• Background Pages: define the
behavior of the extension

− Do not have any visibility to the user

• Content Scripts: JavaScript
files that runs in the context of a
web page

• Permissions: permissions to
access the different parts of the
extension API

Content Scripts 9

"background": {
 "scripts": ["background.js"]
},

"content_scripts": [{
 "matches": ["http://www.google.com/*"],
 "css": ["mystyle.css"]
 "js": ["jquery.js", "myscript.js"]
}],

"permissions": [
 "bookmakrs",
 "*://*.facebook.com/",
 "https://www.google.com/"
],
...

• Background Pages: define the
behavior of the extension

− Do not have any visibility to the user

• Content Scripts: JavaScript
files that runs in the context of a
web page

• Permissions: permissions to
access the different parts of the
extension API

Content Scripts 10

"background": {
 "scripts": ["background.js"]
},

"content_scripts": [{
 "matches": ["http://www.google.com/*"],
 "css": ["mystyle.css"]
 "js": ["jquery.js", "myscript.js"]
}],

"permissions": [
 "bookmakrs",
 "*://*.facebook.com/",
 "https://www.google.com/"
],
...

• Background Pages: define the
behavior of the extension

− Do not have any visibility to the user

• Content Scripts: JavaScript
files that runs in the context of a
web page

• Permissions: permissions to
access the different parts of the
extension API

Two JavaScript files will be
run in the page for any URLs
matching the specified URL

patterns

Content Scripts 11

• Background Pages: define the
behavior of the extension

− Do not have any visibility to the user

• Content Scripts: JavaScript
files that runs in the context of a
web page

• Permissions: permissions to
access the different parts of the
extension API

http://google.com

Matched URL
Execute this JS from

http://google.com origin

Permissions 12

"background": {
 "scripts": ["background.js"]
},

"content_scripts": [{
 "matches": ["http://www.google.com/*"],
 "css": ["mystyle.css"]
 "js": ["jquery.js", "myscript.js"]
}],

"permissions": [
 "bookmakrs",
 "*://*.facebook.com/",
 "https://www.google.com/"
],
...

• Background Pages: define the
behavior of the extension

− Do not have any visibility to the user

• Content Scripts: JavaScript
files that runs in the context of a
web page

• Permissions: permissions to
access the different parts of the
extension API

Permissions 13

"background": {
 "scripts": ["background.js"]
},

"content_scripts": [{
 "matches": ["http://www.google.com/*"],
 "css": ["mystyle.css"]
 "js": ["jquery.js", "myscript.js"]
}],

"permissions": [
 "bookmakrs",
 "*://*.facebook.com/",
 "https://www.google.com/"
],
...

• Background Pages: define the
behavior of the extension

− Do not have any visibility to the user

• Content Scripts: JavaScript
files that runs in the context of a
web page

• Permissions: permissions to
access the different parts of the
extension API

Extension API permission:
tab, geolocation, bookmarks,
webRequests, … (browser

provided APIs)

Extension API permissions
operate in conjunction with the

optional host permissions

Permissions 14

• Background Pages: define the
behavior of the extension

− Do not have any visibility to the user

• Content Scripts: JavaScript
files that runs in the context of a
web page

• Permissions: permissions to
access the different parts of the
extension API

https://google.com

Permissions 15

• Background Pages: define the
behavior of the extension

− Do not have any visibility to the user

• Content Scripts: JavaScript
files that runs in the context of a
web page

• Permissions: permissions to
access the different parts of the
extension API

https://google.com

Can execute privileged
chrome.* APIs according to its

permissions

Is Your Extension Secure?

Malicious Extensions 17

"background": {
 "scripts": ["background.js"]
},

"content_scripts": [{
 "matches": ["*"],
 "js": ["attacker.js"]
}],

"permissions": [
 "bookmakrs",
 "geolocation”, … //all permissions
 "*"
],
...

Execute arbitrary JS
code in any domain

Execute arbitrary browser
APIs in any domain

Malicious Extensions 18

• Modify page content
• Keystroke logging (steal your information)
• Steal cookies
• See browser histories
• Cryptocurrency mining
• Inject ad

Malicious Extensions 19

Difficulties in Identifying Malicious Extensions

• JavaScript Obfuscation

20

Difficulties in Identifying Malicious Extensions

• JavaScript Obfuscation

• Cloacking: a malicious extension loads different code based on
the tester’s location and IP

− Google's IP range: loads legitimate code
− IP range outside of Google: loads malicious code

• Its malicious behaviors can be triggered remotely
• No malicious behaviors appear until certain conditions met

21

Hulk, UNISEX SEC’2014

• Dynamically detect malicious extensions

22

Hulk, UNISEX SEC’2014

• Dynamically detect malicious extensions

• Let’s trigger the malicious code, which is conditionally executed
− How?
− Intuition: several malicious extensions activate based on the content of a

web page
− Idea: Honey Page (Extension testing page)
− Dynamically create DOM elements whenever an extension requests

certain DOM elements

23

Honey Pages 24

https://honeypage.com
if (“amazon” ==
 document.content.iframe.id)
 // malicious behavior

Query for DOM tree

Extension under test

Overload built-in functions
that query the DOM tree of

the web page

<iframe id = “amazon”>
</iframe>

Automatically create queried
element and insert it into the

page

Hulk, UNISEX SEC’2014

• Dynamically detect malicious extensions

• Let’s trigger the malicious code, which is conditionally executed
− How?
− Intuition: several malicious extensions activate based on the content of a

web page
− Idea: Honey Page (Extension testing page)
− Dynamically create DOM elements whenever an extension requests

certain DOM elements

25

How to detect maliciousness?

Malicious Behaviors (Bug Oracle)

• Attempt to uninstall other extensions
• Make hard to be uninstalled

− Dynamically replace or remove that tab chrome://extensions
• Remove security request headers

− X-Frame-Options and Content-Security-Policy
• Inject keylogger JS code

− Intercepting every keystroke
• Looking for DOM elements whose name is “password”
• Alter outgoing HTTP requests

− For requests from Amazon pages, the extensions adds parameters that
credit a particular affiliation

− htttp://www.amazon.com/dp/096182570/?tag=affilateID

26

Experimental Results

• Total: 48,332
• Benign: 43,490
• Suspicious: 4,712

− Injects dynamic JavaScript
− Evals with input >128 long
− Produces HTTP 4xx errors
− Performs requests to non-existent domains (Why?)

• Malicious: 130
− Ad replacement
− Affiliate fraud
− Keylogger
− Online social network abuse: spams on Facebook account

27

Limitations

• Difficult to detect extensions that perform cloaking

• Searching coverage
− If the extension looks for multiple structural DOM elements, Hulk failed

to prepare such DOMs

• Any malicious extension can detect whether Hulk is in place
− Ask for a random DOM element to the honey page
− If it returns, Hulk is in place

28

Ad Injection 29

Ad injector:
Modify a page’s
content to insert

or replace
advertisements

Ad Injection 30

How Are Users Exposed to Ad Injectors?

• Chrome web store

• Sideloading extension

• Malware infection

31

Is Ad Injector Malicious?

• Why?
− (Privacy) Monitor user’s browser activities for tracking and

advertisement selection
− (User experience) Increases page load latency
− (User experience) Overwhelm the original content (spurious “search

results” and fly-in banners)
− (Security) Serve spam, malware, phishing
− ExamExamExamExamExmaExamExamExamExamExmaExamExamE

xam?
• Who can be damaged from ad injections?

− End users

32

• Identifies ad injection in the wild
• Found 50,870 ad injector extensions, 38% of which are

explicitly malicious

34Ad Injection at Scale, S&P’2015

35Large-scale Ad Injection Investigation, S&P’2015

Identify injected DOM
elements by JS

• Compare between
Injected VS. untampered version

Identify
extensions

• Static Analysis
• Manifest permissions, Access to

Cookie, Age of the extension,
Developer reputation, …

• Dynamic Analysis
• Capture all Chrome API calls, DOM

method calls, network requests, …

Execute them to click
on the injected ad

• Harvest advertisement
revenue clickchains

Limitations

• The data is only from Google website
• Cloacking

36

Phishing

Phishing

• Disguising as a trustworthy entity, and obtain private information
− Login credentials
− Financial records

38

Phishing 39

App
attacker.com
web server

victim

1. Visit attacker’s website

2. Receive malicious page

https://attacker.com/login3. Send sensitive info. (e.g., credential info.)

user_id
my_password

https://attacker.com/login

Phishing

• Disguising as a trustworthy entity, and obtain private information
− Login credentials
− Financial records

• Links to phishing webpages dispatched to victims through email
or SMS

• According to a report from the FBI, it received 800,944 reports
of phishing, with losses exceeding $10.3 billion in 2022

40

41

Phishing 42

Typical Properties of Spoofed Sites

• Attackers manually copy/recreate web content from target website
− Show logos found on the honest site

• Have suspicious URLs: mostly, being camouflaged as a URL that
looks familiar to people

− E.g., umist.ac.kr

• Ask for user input
− Debit card number, username, password, …

• Phishing content served from attacker-owned web server
− Or a compromised web server

43

Safe to Type Your Password? 44

Spear Phishing

• Phishing attempts directed at specific individuals
• This can increase the likelihood of success, as the sender appears

more credible and informed

45

Spear Phishing 46

Spear Phishing 47

How to Detect Phishing?

• Crowdsourcing, Blacklisting
− lists reported phishing URLs
− E.g., https://openphish.com/

48

https://openphish.com/

How to Detect Phishing?

• Crowdsourcing, Blacklisting
− lists reported phishing URLs
− E.g., https://openphish.com/

• URL-based pattern detection
− E.g., A URL is phishy if its length ≥ 76
− E.g., Brand name modification with ‘-’

§ youtube-x.com

• Content-based pattern detection

49

Research topic J

• Require human intervention and
verification

• Phishers are starting to use one-
time URLs

https://openphish.com/

Question?

