
Homework #1: Mini-RSA

Due: April 4, 11:59 PM
Responsible TA: Jaeho Bae (bjho@unist.ac.kr)

1 Assignment Description
In this programming assignment, you will implement the RSA encryption and digital signature algorithms in Python3.
You will create a program, rsa_program.py, that allows users to generate RSA key pairs, encrypt and decrypt
messages using RSA, and create and verify digital signatures.

2 Submission
• Late submission will be assessed a penalty of 10% per day (We will only accept late submissions of up to 3 days).
• Submit one ZIP file (Your_ID-hw1.zip) to Blackbored. For example, if your ID is 20231234, then you

should submit a file named 20231234-hw1.zip.
• Compress the following files into a single ZIP archive Your_ID-hw1.zip:

– rsa_program.py: This file will contain the program for implementing the RSA cryptosystem. You
should include comments explaining each part of your implemented logic within the code. Comments can
be written in either English or Korean.

– coding_document.pdf: This document should provide a clear and concise explanation of the RSA
implementation, including how the program works, the purpose of each function, and any important al-
gorithms or mathematical concepts involved. The coding document can be written in either English or
Korean.

3 Execution Environment
You are required to fulfill this homework using Python 3.9, utilizing only the Python standard library [1]. This means
we do not assume any additional libraries downloaded via pip. Note that we will evaluate your code in a Python
3.9.20 on Ubuntu 20.04. If your code does not run correctly in our environment, you will receive zero points for this
homework. No exceptions will be made.

To help you ensure that your code runs correctly in our grading environment, we provide a Docker image [2]. You
can set up our grading environment by running the following two commands in your code directory.

$ docker pull cse467/hw
$ docker run --rm -it -v .:/app cse467/hw /bin/bash

Using the -v option, the working directory inside the grading environment will be linked to the working directory
in your host environment. By running your code in this grading environment, you can ensure that it runs properly
before submission.

1

4 Guidelines
4.1 RSA Key Generation

1. Implement a program that generates RSA key pairs.
2. Allow the user to input prime numbers 𝑝 and 𝑞.
3. Log and display the following key components:

• Modulus 𝑛 (𝑛 = 𝑝 × 𝑞)
• Public exponent 𝑒
• Private exponent 𝑑
• Totient function 𝜙(𝑛) (𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1))

4. Ensure that 𝑒 is chosen deterministically based on the input 𝑝 and 𝑞. Specifically:
• Calculate (𝑝 − 1)(𝑞 − 1).
• Choose 𝑒 as the 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 prime number greater than 2 and less than (𝑝−1)(𝑞 −1) (hint: use the Euclidean

Algorithm).
5. Your program should be invoked from the command line with the following syntax:

$python3 rsa_program.py --generate-key --p <prime_p> --q <prime_q>

• Output #1 (stdout): displayed in the terminal
RSA key pair generated:
n=<modulus>
e=<public exponent>
d=<private exponent>
phi=<Totient function>

• Output #2 (file): public_key.txt and private_key.txt

– Public Key (public_key.txt)
n=<modulus in integer format>
e=<public exponent in integer format>

– Private Key (private_key.txt)
n=<modulus in integer format>
d=<private exponent in integer format>

4.2 RSA Encryption and Decryption
Implement functions for (1) RSA encryption and (2) RSA decryption:

• Allow users to use their generated keys (public_key.txt and private_key.txt).
• For encryption, your program should read the content of the <plaintext_file> and encrypt it using the

<public_key_file>. You should convert each character in the message to its corresponding ASCII (deci-
mal) value, encrypt each ASCII value using the public key, and then display the results in a hexadecimal sequence
(Refer to §5.2):

$python3 rsa_program.py --encrypt <plaintext_file> --public-key <public_key_file> --output <ciphertext_file>

2

– Output #1 (stdout): displayed in the terminal
Ciphertext: <Ciphertext in hexadecimal format>

– Output #2 (<ciphertext_file>)
<Ciphertext in hexadecimal format>

• For decryption, your program should read the content of the <ciphertext_file> and decrypt it using the
<private_key_file>:

$python3 rsa_program.py --decrypt <ciphertext_file>
--private-key <private_key_file> --output <plaintext_file>

– Output #1 (stdout): displayed in the terminal
Decrypted plaintext: <Plaintext>

– Output #2 (<plaintext_file>)
<Plaintext>

4.3 Digital Signatures
Implement functions for (1) creating and (2) verifying digital signatures using RSA:

• To create a digital signature, sign the message using the private key and show the signature.
• For creating signature, your program should follow the following format. You should convert each character in

the message to its corresponding ASCII value, encrypit each ASCII value using the private key, and then present
it as a hexadecimal sequence (Refer to §5.3):

$python3 rsa_program.py --sign <verification_message>
--private-key <private_key_file> --signature <signature_file>

– Output #1 (stdout): displayed in the terminal
Signature: <Signature in hexadecimal format>

– Output #2 (<signature_file>)
<Signature in hexadecimal format>

• To verify a digital signature, verify it using the public key and show whether the given verification message is
same with the signed message or not.

• For verifying signature, your program should follow the following format:

$python3 rsa_program.py --verify <verification_message>
--signature <signature_file> --public-key <public_key_file>

– Output (stdout): displayed in the terminal
If the signature is valid, show the following content:
Signature is valid

If the signature is invalid, show the following content:
Signature is invalid

3

5 Examples
Here are examples of the expected standard output, file output, and command-line usage for each part of the assignment:

5.1 Generate RSA Key Pairs
• Command-line usage:

$python3 rsa_program.py --generate-key --p 61 --q 53

– Expected standard output:

RSA key pair generated:
n=3233
e=7
d=1783
phi=3120

– Expected file output (public_key.txt):

n=3233
e=7

– Expected file output (private_key.txt):

n=3233
d=1783

5.2 RSA Encryption and Decryption
• Command-line usage (encryption) - In this example, let’s assume that the content of the plaintext.txt

is “Hello, RSA!".

$python3 rsa_program.py --encrypt plaintext.txt --public-key public_key.txt
--output ciphertext.txt

– Expected standard output (encryption, e.g., H is mapped to 0x43f):

Ciphertext: 0x43f 0xbff 0x755 0x755 0xc6f 0x469 0xad6 0x435 0x721 0x525 0x971

– Expected file output (ciphertext.txt):

0x43f 0xbff 0x755 0x755 0xc6f 0x469 0xad6 0x435 0x721 0x525 0x971

• Command-line usage (decryption):

$python3 rsa_program.py --decrypt ciphertext.txt --private-key private_key.txt
--output decrypted.txt

– Expected standard output (decryption):

Decrypted plaintext: Hello, RSA!

– Expected file output (decrypted.txt):

Hello, RSA!

4

5.3 Digital Signatures
• Command-line usage (signature creation):

$python3 rsa_program.py --sign ThisIsMySign --private-key private_key.txt
--signature signature.txt

– Expected standard output (signature creation):

Signature: 0x8b0 0xfb 0x561 0x8cb 0xb0f 0x8cb 0x314 0x392 0x4c 0x561 0x76f 0x4e8

– Expected file output (signature.txt):

0x8b0 0xfb 0x561 0x8cb 0xb0f 0x8cb 0x314 0x392 0x4c 0x561 0x76f 0x4e8

• Command-line usage (signature verification):

$python3 rsa_program.py --verify ThisIsMySign --signature signature.txt
--public-key public_key.txt

– Expected standard output (signature verification):

Signature is valid

6 Note
• Input and output. Both standard and file output must end without any trailing spaces or a newline character.

Also, for encryption, decryption, and signing implementation, you only need to consider processing one line of
text. Don’t consider multiple lines of text.

• Be careful about plagiarism! We will conduct strict cross-plagiarism detection for evaluation, including a series
of answer generated by ChatGPT, code found online, and your submissions. Therefore, we do not recommend
consulting ChatGPT or online solutions. Last semester, we identified several cases of plagiarism using an auto-
mated tool. If you are found to be engaged in "deep collaboration" with other students, both the provider and the
recipient will receive penalties, including, in the worst case, receiving an F grade.

• Grading policy. We will grade strictly based on (1) the accuracy of the output relative to the input and (2) the
quality of the summary and organization of the coding_document.pdf file.

• Questions. If you have any requests or questions (technical difficulties, late submission due to inevitable circum-
stances, etc.), please ask the TAs on Blackboard. We generally encourage the use of Blackboard for discussions.
However, for urgent issues or secret issues, you can send an email to the responsible TA, Jaeho Bae.

5

References
[1] 2024. The Python Standard Library. https://docs.python.org/3.9/library/.
[2] 2025. Docker Hub Image: cse467/hw. https://hub.docker.com/r/cse467/hw.

6

https://docs.python.org/3.9/library/
https://hub.docker.com/r/cse467/hw

	Assignment Description
	Submission
	Execution Environment
	Guidelines
	RSA Key Generation
	RSA Encryption and Decryption
	Digital Signatures

	Examples
	Generate RSA Key Pairs
	RSA Encryption and Decryption
	Digital Signatures

	Note

