
11. Client-side Web Security (2)

Seongil Wi

Department of Computer Science and Engineering

CSE467: Computer Security

HW2: Web Hacking Competition

• Hacking practice: Capture the Flag (CTF)

• Challenge open (competition start): 4/14 (Mon)

• Due date (writeup report): 5/2 (Fri)

• CTF server URL: You can obtain it by solving Problem 0 ☺
− This server can only be accessed from the UNIST internal network.

− Please use a VPN to access from outside! Just log in to
https://vpn.unist.ac.kr and turn on VPN

• ID: [Your Student ID]@unist.ac.kr

• PW: [Your Password]

2

https://vpn.unist.ac.kr/

HW2: Web Hacking Competition

• 11 Challenges

3

HW2: Web Hacking Competition

• 11 Challenges

• Each flag is in the following format: flag{[0-9a-f{32}]}
− e.g., flag{1a79a4d60de6718e8e5b326e338ae533}

• Do not attack the CTF environments, including web services!

4

HW2: Web Hacking Competition

The student who is the quickest to complete
all the problems will earn bonus points!

5

Recap: How to Prevent XSS Attacks?

#1: Input validation/sanitization
− Any user input must be preprocessed before it is used inside HTML

− Option 1-1: Implement your own sanitization logic (not recommended)

− Option 1-2: Use the good escaping libraries

▪ E.g., htmlspecialchars(string), htmlentities(string), …

#2: Content Security Policy (CSP)
− A new security mechanism supported by modern browsers

− Next lecture!

6

Content-Security Policy (CSP)

Content Security Policy (CSP)

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

8

9

https://seongil.com

App

Browser Server-side

application

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

CSP Workflow

https://wsplab.com/

CSP Workflow 10

https://seongil.com

App

Browser Server-side

application

HTTP/1.1 200OK
Server: Apache/1.3
Content-Security-Policy:

script-src ‘none’;

<script>
alert(‘XSS’)

</script> HTTP Response

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

e.g., due to reflected

XSS attacks

https://wsplab.com/

11

HTTP/1.1 200OK
Server: Apache/1.3
Content-Security-Policy:

script-src ‘none’;

<script>
alert(‘XSS’)

</script>
https://seongil.com

Browser

CSP Workflow

HTTP Response

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

Servers declare

trusted sources

https://wsplab.com/

12

HTTP/1.1 200OK
Server: Apache/1.3
Content-Security-Policy:

script-src ‘none’;

<script>
alert(‘XSS’)

</script>
https://seongil.com

Browser

Enforce!

Block

CSP Workflow

HTTP Response

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

https://wsplab.com/

Example Policy on paypal.com

Demo:

https://www.paypal.com/home

13

https://www.paypal.com/home

Content Security Policy (CSP)

• Explicitly allow resources which are trusted by the developer
− Servers declare trusted sources

• Disallow dangerous JS constructs like eval or event handlers

• Delivered as HTTP header or in meta element in page
− HTTP header: Content-Security-Policy: default-src …

− Meta element: <meta http-equiv=“Content-Security-Policy”
content=“default-src…”>

• Enforced by the browser (all policies must be satisfied)
− Your browser must support CSP for its use

• First candidate recommendation in 2012, currently at Level 3

14

Browser Support 15

CSP Popularity 16

https://www.bitsight.com/blog/content-security-policy-limits-dangerous-activity-so-why-isnt-everyone-doing-it

https://www.bitsight.com/blog/content-security-policy-limits-dangerous-activity-so-why-isnt-everyone-doing-it

Format of CSP 17

Policy := [directive [value1];]...

A list of pairs of

directive and values

✓ Directive: script-src
• Specifically controls where scripts can be loaded from
• If provided, inline scripts and eval will not be allowed

✓ Value: Many different ways to control sources
• ‘none’ – no scripts can be included from any host
• ‘self’ – only own origin
• https://domain.com – allow the script from this origin
• https://*.domain.com – any subdomain of domain.com, any

 script on them
• https: – any origin delivered via HTTPs
• ‘unsafe-inline’ / ‘unsafe-eval’ – reenables inline

 handlers and eval

18CSP Level 1 – Controlling Scripting Resources

Policy := [directive [value1];]...

CSP Level 1 Demo

Demo:

https://websec-lab.github.io/courses/2025s-
cse467/demo/csp_demo.html

19

https://websec-lab.github.io/courses/2025s-cse467/demo/csp_demo.html
https://websec-lab.github.io/courses/2025s-cse467/demo/csp_demo.html

CSP Level 1 – Example 20

script-src ‘self’ https://unist.ac.kr;

CSP for website https://example.com:

HTML
Execution

Allowed?

<script src = “https://unist.ac.kr/myscript.js”></script>

<script src = “https://example.com/stuff.js”></script>

<script>alert(1)</script> // inline script

<script src = “https://ad.com/someads.js”></script>

Executes scripts only

from the same origin and

https://unist.ac.kr

✓

✓

𝘟

𝘟

21CSP Level 1 – Controlling Additional Resources

• img-src, style-src, font-src, object-src, media-src
− Controls non-scripting resources: images, CSS, fonts, objects,

audio/video

• frame-src
− Controls from which origins frames may be added to a page

• connect-src
− Controls XMLHttpRequest, WebSockets (and other) connection targets

• default-src
− Serves as fallback for all fetch directives (all of the above)

− Only used when specific directive is absent

CSP Level 1 – Limitations

• If our goal is to allow scripts from own origin and inline scripts
− Solution: script-src ‘self’ ‘unsafe-inline’

• Problem: bypasses literally any protection
− Attacker can inject inline JavaScript

• One possible solution: removing inline script and converting it
into an external script

• Proposed improvement in CSP Level 2: nonces and hashes

24

<script>
 alert(1)
</script>

alert(1)
For each inline script…

converting
<script src=“myscript.js”>
</script>

myscript.js

CSP Level 2 – Nonces and Hashes

• Allows every inline script adds nonce property

−script-src ‘nonce-$value’ ‘self’

• Allows inline scripts based on their SHA hash (SHA256,
SHA384, or SHA512)

−script-src ‘sha256-$hash’ ‘self’

25

CSP Level 2 – Example 26

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53' 'sha256-
5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c'

<script>
alert(“My hash is correct”)
</script>

<script>
alert(“incorrect”)
</script>

SHA256 hash value:

5bf5c8f91b8c6adde74da363ac497d5ac19
e4595fe39cbdda22cec8445d3814c

CSP Level 2 – Example 27

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53' 'sha256-
5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c'

<script>
alert(“My hash is correct”)
</script>

<script>
alert(“incorrect”)
</script>

✓ 𝘟

SHA256 matches

value of CSP header

SHA256 does not

match

CSP Level 2 – Example 28

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53' 'sha256-
5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c'

<script nonce=“d90e0153c074f6c3fcf53”>
alert(“It’s all good”)
</script>

<script nonce=“nocluehackplz”>
alert(“I will not work”)
</script> ✓ 𝘟

Script nonce matches

CSP header

Script nonce does not

match CSP header

CSP Level 2 – Limitations 29

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53' 'sha256-
5bf5c8f91b8c6adde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c'

<script nonce=“d90e0153c074f6c3fcf53”>
script=document.createElement("script");
script.src = "http://ad.com/ad.js";

 document.body.appendChild(script);
</script>

Does this script work under a

nonce-based policy?
No!

Add new script element

without nonce

• Additional changes: add strict-dynamic
−Allows adding scripts programmatically, eases CSP

deployment in, e.g., ad scenario

• Mostly due to dynamic ADs
−1st page load: script from ads.com → fancy-cars.com
−2nd page load: script from ads.com → cheap-ads.net →

dealsdeals.biz

• Idea: propagate trust
−If we trust ads.com, let’s also trust whoever ads.com load

script from

30Changes from Level 2 to Level 3: Strict-dynamic

Recap: Chain of Trust 31

Root CA

Sub CA 1 Sub CA 2 Sub CA 2

…. …. ….

Root CA’s Digital

Certificate

Root CA’s

public key

Self

sign

Sub CA’s Digital

Certificate

Sub CA’s

public key

Root CA’s

sign Signed with

root CA’s public key

CSP Level 3 – strict-dynamic Example 32

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53’ ‘strict-dynamic’

<script nonce=“d90e0153c074f6c3fcf53”>
script=document.createElement("script");
script.src = "http://ad.com/ad.js";

 document.body.appendChild(script);
</script>

Propagate trust: we also trust this

script, so we allow it to execute

We trust this script

CSP – Bypasses

• Does not stop XSS, tries to mitigate its effects

• Problem #1: User input at the trusted script

33

Problem #1: User Input

• What if the injection happens directly at nonced script
elements?

34

script-src ‘nonce-random123’ ‘strict-dynamic’;

<script nonce=“random123”>
script=document.createElement("script");
script.src = user_input + “valid.js";

 document.body.appendChild(script);
</script>

Problem #1: User Input

• What if the injection happens directly at nonced script
elements?

35

script-src ‘nonce-random123’ ‘strict-dynamic’;

<script nonce=“random123”>
script=document.createElement("script");
script.src = user_input + “valid.js";

 document.body.appendChild(script);
</script>

Attacker can inject

attacker.com

Executes on the

target origin

CSP – Bypasses

• Does not stop XSS, tries to mitigate its effects

• Problem #1: User input at the trusted script

• Problem #2: Developer’s mistake/misconfiguration

36

• Developer’s mistake

−Typo in the first directive leads to the default-src directive being
missing from the policy (Content Security Problems?, CCS’16)

• Developer’s misconfiguration

−Defining CSP is hard!

−Many website developers just allow all of the inline script and all hosts

−94.72% of all website bypassible (e.g., misconfigured their CSP)
(CSP Is Dead, Long Live CSP!, CCS’2016)

37

defalt-src ‘self’

default-src ‘unsafe-inline’ *

Problem #2: Developer’s Mistake/Misconfiguration

CSP – Bypasses

• Does not stop XSS, tries to mitigate its effects

• Problem #1: User input at the trusted script

• Problem #2: Developer’s mistake/misconfiguration

• Problem #3: Browser bugs (CSP enforcement bugs)

38

Problem #3: Browser Bugs
• NOTE: CSP is enforced by the browser

39

Chrome

Well-defined CSP
Execute attacker’s

JS code

<?php
header(“HTTP/: 100”);
header(“Content-Security-Policy: default-src ‘self’”)

?>

<script>alert(1)</script>

Chrome

Execute

JS code
(due to 100

status code)
Safari Firefox

✓ 𝘟Not execute

JS code 𝘟Not execute

JS code

Expected behavior:

Not execute JS code

Research Question:
How to find
CSP-related browser bugs?

(FYI) Finding CSP Enforcement

Specification for CSP: https://www.w3.org/TR/CSP3/

41

Chrome Developer

Implement

Specification

 for CSP

https://www.w3.org/TR/CSP3/

(FYI) Finding CSP Enforcement 42

Chrome Developer

(Incorrectly) Implement

Specification

 for CSP Buggy description

Misunderstand

Reason:

(FYI) Finding CSP Enforcement 43

Chrome Developer

(Incorrectly) Implement

Specification

 for CSP Buggy description

Misunderstand

Reason:

(FYI) Finding CSP Enforcement

Chrome Developer

(Incorrectly) Implement

Specification

 for CSP

Safari

Implement

Firefox

Implement

Our approach:

 Differential testing!

(FYI) Finding CSP Enforcement

Chrome

Specification

 for CSP

Safari

Firefox

Not
executed

Not
executed

Executed

Buggy description

Misunderstand

Due to…

Testing CSPs

Testing HTMLs

(FYI) Finding CSP Enforcement

Chrome

Specification

 for CSP

Safari

Firefox

• First testing tool for finding
CSP enforcement bugs

• Found 27 browser bugs in
Chrome, Safari, and FireFox

• …and three description bugs

• 23 bugs have been patched

• Published in NDSS’23

Result

Not
executed

Not
executed

Executed

Testing CSPs

Testing HTMLs

Recent Studies

- DiffCSP, NDSS ’23

- 12 angry developers, CCS ’21

- Complex security policy?, NDSS ’20

- CSP is dead, long live CSP!, CCS ’16

- Reining in the web with CSP, WWW ’10

- CCSP, USENIX Security ’17

- CSPAutoGen, CCS ’16

47

Cross-Site Request Forgery
(CSRF)

1st try

https://instagram.com

App

instagram.com

web server

Username: Alice

Password: 1234

Recap: Cookies 49

Set-Cookie: SSID:4AEBRE42

2nd try

https://instagram.com

App

instagram.com

web server

Hey Instagram,

show me my profile

Cookie: SSID:4AEBRE42

?
Hello Alice!

Here is your profile

https://facebook.com/
https://instagram.com/

Recap: Cookies 50

• Store a server-created file (cookie) in the browser

• Examples
− Authentication (log in)

− Personalization (language preference, shopping cart)

− User tracking

Q. What if an attacker tricks the user to do unwanted actions?

(e.g., send money to the attacker)

Regular Website Usage 51

App

bank.com

User

https://bank.com/transfer.php

Submit

Destination account:

Amount:

123-456-789

$50

<form method=“POST”
target=“https://bank.com/transfer.php”>
 <input type=“text” name=“to”>
 <input type=“text” name=“amount”>
 <input type=“submit”>
</form>

Processing

transaction

https://bank.com/transfer.php

Cross-Site Request Forgery (CSRF) 52

App

attacker.com

web server

App

bank.com

victim

https://attacker.com/seecat

https://attacker.com/seecat

Cross-Site Request Forgery (CSRF) 53

App

attacker.com

web server

App

bank.com

victim

https://attacker.com/seecat

<form method=“POST” id=“transfer”
target=“https://bank.com/transfer.php”>
 <input type=“hidden” name=“to” value=“attacker_account”>
 <input type=“hidden” name=“amount” value=“1000000”>
</form>
<script>
 transfer.submit();
</script>

https://attacker.com/seecat

Cross-Site Request Forgery (CSRF) 54

App

attacker.com

web server

App

bank.com

victim

https://attacker.com/seecat

<form method=“POST” id=“transfer”
target=“https://bank.com/transfer.php”>
 <input type=“hidden” name=“to” value=“attacker_account”>
 <input type=“hidden” name=“amount” value=“1000000”>
</form>
<script>
 transfer.submit();
</script>

Attacker can control

these values

Send request!

(No user involvement required)

https://attacker.com/seecat

Cross-Site Request Forgery (CSRF) 55

App

attacker.com

web server

App

bank.com

victim

https://attacker.com/seecat

<form method=“POST” id=“transfer”
target=“https://bank.com/transfer.php”>
 <input type=“hidden” name=“to” value=“attacker_account”>
 <input type=“hidden” name=“amount” value=“1000000”>
</form>
<script>
 transfer.submit();
</script>

Processing

transaction

Cross-Site Request Forgery

https://attacker.com/seecat

Cross-Site Request Forgery (CSRF)

• Force a user to execute unwanted actions (e.g., changing state)
on an authenticated web application

• Attack works for GET …
− Invisible images, hidden iframes, css files, scripts, …

56

Cross-Site Request Forgery (CSRF)

• Force a user to execute unwanted actions (e.g., changing state)
on an authenticated web application

• Attack works for GET …
− Invisible images, hidden iframes, css files, scripts, …

57

The image is not visible, but

the request goes out

Browser send request on

behalf of the user (victim)

Cross-Site Request Forgery (CSRF)

• Force a user to execute unwanted actions (e.g., changing state)
on an authenticated web application

• Attack works for GET …
− Invisible images, hidden iframes, css files, scripts, …

• and POST

58

<form method="POST" action="https://bank.com/transfer.php" id="transfer">
 <input type="hidden" name="act-to" value="attacker_account">
 <input type="hidden" name="amount" value="100000">
</form>
<script>
 transfer.submit()
</script>

Cross-Site Request Forgery (CSRF)

• Force a user to execute unwanted actions (e.g., changing state)
on an authenticated web application

• Attack works for GET …
− Invisible images, hidden iframes, css files, scripts, …

• and POST

59

<form method="POST" action="https://bank.com/transfer.php" id="transfer">
 <input type="hidden" name="act-to" value="attacker_account">
 <input type="hidden" name="amount" value="100000">
</form>
<script>
 transfer.submit()
</script>

Very important point:

A web page can send information to any site!

SOP Does Not Control Sending

• SOP violation? Nope!

• Same origin policy (SOP) controls access to DOM

• Active content (scripts) can send a request anywhere!
− No user involvement required

60

CSRF on Netflix 2006 61

CSRF on Netflix 2006

• CSRF vulnerabilities at Netflix allowed the attacker to do:
− Add movies to your rental queue

− Add a movie to the top of your rental queue

− Change the name and address of a victim’s account

− Change the email and password on a victim’s account

62

<img
 src=“http://www.netflix.com/changeinfo?email=seongil.wi@unist.ac.kr&password=hello”
 width=“1”
 height=“1”
 border=“0”>

How to Defense CSRF Attacks?

• Referrer checking: “where is this request coming from?”
− Accept requests only if their referrer is the same as the server (e.g.,

*.bank.com)

63

Recap: Referrer Header 64

GET /cse467.html HTTP/1.1
Host: websec-lab.com
Accept-Language: en
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64;)
Referer: http://google.com

Contain the address from which a

resource has been requested

How to Defense CSRF Attacks?

• Referrer checking: “where is this request coming from?”
− Accept requests only if their referrer is the same as the server (e.g.,

*.bank.com)

• Secret validation token
− For each session, a fresh secret token is generated by the server

− Send requests with the token

− Accept requests only if the token is valid

65

Secret Validation Token: Regular Usage 66

App

bank.com

User

https://bank.com/transfer.php

Submit

Destination account:

Amount:

123-456-789

$50

<form method=“POST”
target=“https://bank.com/transfer.php”>
 <input type=“text” name=“to”>
 <input type=“text” name=“amount”>
<input type=“hidden” name=“token” value=“N73GN9IA”>

 <input type=“submit”>
</form>

Processing

transaction

Random

token

https://bank.com/transfer.php

Secret Validation Token: Preventing CSRF 67

App

attacker.com

web server

App

bank.com

victim

https://attacker.com/seecat

<form method=“POST” id=“transfer”
target=“https://bank.com/transfer.php”>
 <input type=“hidden” name=“to” value=“attacker_account”>
 <input type=“hidden” name=“amount” value=“1000000”>
<input type=“hidden” name=“token” value=“noclue”>

</form>
<script>
 transfer.submit();
</script>

Invalid token:

No transaction

https://attacker.com/seecat

How to Defense CSRF Attacks?

• Referrer checking: “where is this request coming from?”
− Accept requests only if their referrer is the same as the server (e.g.,

*.bank.com)

• Secret validation token
− For each session, a fresh secret token is generated by the server

− Send requests with the token

− Accept requests only if the token is valid

• SameSite Cookies

68

Same-Site Cookies

• Two modes
− Strict: browser will NEVER send cookies with cross-origin request

− Lax: browser will send the cookie in cross-site requests, but only if both
of the following conditions are met:

▪ The request uses safe requests (e.g., GET)

▪ The request resulted from a top-level navigation by the user, such
as clicking on a link

• Until May 2018, only supported by Chrome and Opera

• Since Chrome 80, defaults to SameSite=lax

69

Set-Cookie: session=0F8tgdOhi9ynR1M9wa3ODa; SameSite=Strict

Clickjacking

Recap: Browser Execution Model

• Windows may contain frames from different sources

−Frame: rigid visible division

−iFrame: floating inline frame

71

<iframe src=“b.com”>
</iframe>

Framing other Websites

• HTML supports framing of other (cross-origin sites)
− E.g., iframes

− Very useful feature for advertisement, like buttons, …

• Embedding site controls most of the frame’s properties
− How large the frame should be

− Where the frame is displayed

− How opaque the frame should be….

72

What could go wrong?

Clickjacking (UI Redressing)

• Attacker overlays transparent or opaque frames to trick a
user into clicking on a button or link on another page

73

https://attacker.com/attack.html

victim

Play the game!

<iframe src=‘https://bank.com/payment’>
</iframe>

https://websec-lab.com/cse467.html

Clickjacking (UI Redressing)

• Attacker overlays transparent or opaque frames to trick a
user into clicking on a button or link on another page

74

https://attacker.com/attack.html

victim

Play the game!

<iframe src=‘https://bank.com/payment’>
</iframe>

https://websec-lab.com/cse467.html

Clickjacking (UI Redressing)

• Attacker overlays transparent or opaque frames to trick a
user into clicking on a button or link on another page

75

https://attacker.com/attack.html

victim

Play the game!

<iframe src=‘https://bank.com/payment’>
</iframe>

HTML attributes

style opacity:0.5

https://websec-lab.com/cse467.html

Clickjacking (UI Redressing)

• Attacker overlays transparent or opaque frames to trick a
user into clicking on a button or link on another page

76

https://attacker.com/attack.html

victim

Play the game!

<iframe src=‘https://bank.com/payment’>
</iframe>

HTML attributes

style opacity:0

Victim will send

money!

https://websec-lab.com/cse467.html

Clickjacking Demo

• Demo: https://websec-lab.github.io/courses/2025s-
cse467/demo/clickjacking_demo1.html

77

https://websec-lab.github.io/courses/2025s-cse467/demo/clickjacking_demo1.html
https://websec-lab.github.io/courses/2025s-cse467/demo/clickjacking_demo1.html

Clickjacking – Hiding the Target Element

• Use CSS opacity property and z-index property

78

Make other element

float under the target

element

Hide target element

Clickjacking - Fake Cursors

• Use CSS cursor property and JavaScript to simulate a fake
cursor icon on the screen

79

Real cursor icon Fake cursor icon

Clickjacking - Fake Cursors

• Use CSS cursor property and JavaScript to simulate a fake
cursor icon on the screen

80

Real cursor icon Fake cursor icon

Hide real curson icon

by using cursor: none

Cursor Spoofing 81

How to Prevent Clickjacking?

• Frame busting
− Make sure that my website is not loaded in an enclosing frame

• Use CSP’s frame-ancestors
− Determine whether my website may be embedded in another site

− ‘none’: denies from any host

− ‘self’: allows only from same origin

− http://example.org: allows specific origin

82

if (top != self)
 top.location = self.location

JS

Phishing

Phishing 84

App

attacker.com

web server

victim

https://attacker.com/login

user_id

my_password

https://attacker.com/login

Phishing

• Disguising as a trustworthy entity, and obtain private information
− Login credentials

− Financial records

• Links to phishing webpages dispatched to victims through email
or SMS

• According to a report from the FBI, it received 800,944 reports
of phishing, with losses exceeding $10.3 billion in 2022

85

86

Phishing 87

Typical Properties of Spoofed Sites

• Attackers manually copy/recreate web content from target website
− Show logos found on the honest site

• Have suspicious URLs: mostly, being camouflaged as a URL that
looks familiar to people

− E.g., umist.ac.kr

• Ask for user input
− Debit card number, username, password, …

• Phishing content served from attacker-owned web server
− Or a compromised web server

88

Safe to Type Your Password? 89

Spear Phishing

• Phishing attempts directed at specific individuals

• This can increase the likelihood of success, as the sender appears
more credible and informed

90

Spear Phishing 91

Spear Phishing 92

How to Detect Phishing?

• Crowdsourcing, Blacklisting
− lists reported phishing URLs

− E.g., https://openphish.com/

93

https://openphish.com/

How to Detect Phishing?

https://openphish.com/

• Crowdsourcing, Blacklisting
− lists reported phishing URLs

− E.g., https://openphish.com/

• URL-based pattern detection
− E.g., A URL is phishy if its length ≥ 76

− E.g., Brand name modification with ‘-’
▪ youtube-x.com

• Content-based pattern detection

94

Research topic ☺

• Require human intervention and

verification

• Phishers are starting to use one-

time URLs

https://openphish.com/

Conclusion

• Content Security Policy (CSP)
− Allow resources which are trusted by the developer

• Cross-Site Request Forgery (CSRF)
− Force a user to execute unwanted actions

• Clickjacking
− Attackers overlays opaque frames to trick a user

• Phishing
− Disguising as a trustworthy entity, and obtain private information

95

Question?

	Slide 1
	Slide 2: HW2: Web Hacking Competition
	Slide 3: HW2: Web Hacking Competition
	Slide 4: HW2: Web Hacking Competition
	Slide 5: HW2: Web Hacking Competition
	Slide 6: Recap: How to Prevent XSS Attacks?
	Slide 7: Content-Security Policy (CSP)
	Slide 8: Content Security Policy (CSP)
	Slide 9: CSP Workflow
	Slide 10: CSP Workflow
	Slide 11: CSP Workflow
	Slide 12: CSP Workflow
	Slide 13: Example Policy on paypal.com
	Slide 14: Content Security Policy (CSP)
	Slide 15: Browser Support
	Slide 16: CSP Popularity
	Slide 17: Format of CSP
	Slide 18: CSP Level 1 – Controlling Scripting Resources
	Slide 19: CSP Level 1 Demo
	Slide 20: CSP Level 1 – Example
	Slide 21: CSP Level 1 – Controlling Additional Resources
	Slide 24: CSP Level 1 – Limitations
	Slide 25: CSP Level 2 – Nonces and Hashes
	Slide 26: CSP Level 2 – Example
	Slide 27: CSP Level 2 – Example
	Slide 28: CSP Level 2 – Example
	Slide 29: CSP Level 2 – Limitations
	Slide 30: Changes from Level 2 to Level 3: Strict-dynamic
	Slide 31: Recap: Chain of Trust
	Slide 32: CSP Level 3 – strict-dynamic Example
	Slide 33: CSP – Bypasses
	Slide 34: Problem #1: User Input
	Slide 35: Problem #1: User Input
	Slide 36: CSP – Bypasses
	Slide 37: Problem #2: Developer’s Mistake/Misconfiguration
	Slide 38: CSP – Bypasses
	Slide 39: Problem #3: Browser Bugs
	Slide 40: Research Question: How to find CSP-related browser bugs?
	Slide 41: (FYI) Finding CSP Enforcement
	Slide 42: (FYI) Finding CSP Enforcement
	Slide 43: (FYI) Finding CSP Enforcement
	Slide 44: (FYI) Finding CSP Enforcement
	Slide 45: (FYI) Finding CSP Enforcement
	Slide 46: (FYI) Finding CSP Enforcement
	Slide 47: Recent Studies
	Slide 48: Cross-Site Request Forgery (CSRF)
	Slide 49: Recap: Cookies
	Slide 50: Recap: Cookies
	Slide 51: Regular Website Usage
	Slide 52: Cross-Site Request Forgery (CSRF)
	Slide 53: Cross-Site Request Forgery (CSRF)
	Slide 54: Cross-Site Request Forgery (CSRF)
	Slide 55: Cross-Site Request Forgery (CSRF)
	Slide 56: Cross-Site Request Forgery (CSRF)
	Slide 57: Cross-Site Request Forgery (CSRF)
	Slide 58: Cross-Site Request Forgery (CSRF)
	Slide 59: Cross-Site Request Forgery (CSRF)
	Slide 60: SOP Does Not Control Sending
	Slide 61: CSRF on Netflix 2006
	Slide 62: CSRF on Netflix 2006
	Slide 63: How to Defense CSRF Attacks?
	Slide 64: Recap: Referrer Header
	Slide 65: How to Defense CSRF Attacks?
	Slide 66: Secret Validation Token: Regular Usage
	Slide 67: Secret Validation Token: Preventing CSRF
	Slide 68: How to Defense CSRF Attacks?
	Slide 69: Same-Site Cookies
	Slide 70: Clickjacking
	Slide 71: Recap: Browser Execution Model
	Slide 72: Framing other Websites
	Slide 73: Clickjacking (UI Redressing)
	Slide 74: Clickjacking (UI Redressing)
	Slide 75: Clickjacking (UI Redressing)
	Slide 76: Clickjacking (UI Redressing)
	Slide 77: Clickjacking Demo
	Slide 78: Clickjacking – Hiding the Target Element
	Slide 79: Clickjacking - Fake Cursors
	Slide 80: Clickjacking - Fake Cursors
	Slide 81: Cursor Spoofing
	Slide 82: How to Prevent Clickjacking?
	Slide 83: Phishing
	Slide 84: Phishing
	Slide 85: Phishing
	Slide 86
	Slide 87: Phishing
	Slide 88: Typical Properties of Spoofed Sites
	Slide 89: Safe to Type Your Password?
	Slide 90: Spear Phishing
	Slide 91: Spear Phishing
	Slide 92: Spear Phishing
	Slide 93: How to Detect Phishing?
	Slide 94: How to Detect Phishing?
	Slide 95: Conclusion
	Slide 96: Question?

