TTTTTTTTTTTTTTTTTTTTTT
nnnnnnnnnnnnnnnnnnnn

CSE467. Computer Security
11. Client-side Web Security (2)

Seongil Wi

Department of Computer Science and Engineering

HW2: Web Hacking Competition

« Hacking practice: Capture the Flag (CTF)
* Challenge open (competition start): 4/14 (Mon)
* Due date (writeup report): 5/2 (Fri)

« CTF server URL: You can obtain it by solving Problem 0 ©
— This server can only be accessed from the UNIST internal network.

— Please use a VPN to access from outside! Just log in to
nttps://vpn.unist.ac.kr and turn on VPN

* |ID: [Your Student ID]J@unist.ac.kr
* PW: [Your Password]

https://vpn.unist.ac.kr/

HW2: Web Hacking Com£etition

« 11 Challenges

CSE467

HW2

Scoreboard Challenges

5. Get Color

10

9. Search V2

25

& Admin Panel

Challenges

2. Password

20

6. Uploader

20

10. Service Center

30

3. Password++

30

7. Uploader++

40

11. Search V3

40

A Notifications O Profile 3 Settings @

4. Check Duplicate

60

8. Search V1

15

HW2: Web Hacking Com£etition

« 11 Challenges

« Each flag is in the following format: flag{[0-9a-f{32}]}
—-e.g., flag{1la79a4d60de6718e8e5b326e338ae533}

* Do not attack the CTF environments, including web services!

HW2: Web Hacking Competition

The student who Is the quickest to complete
all the problems will earn bonus points!

Recap: How to Prevent XSS Attacks?@

#1: Input validation/sanitization
— Any user input must be preprocessed before it is used inside HTML
— Option 1-1: Implement your own sanitization logic (not recommended)

— Option 1-2: Use the good escaping libraries
* £E.9., htmlspecialchars(string), htmlentities(string), ..

#2: Content Security Policy (CSP)

— A new security mechanism supported by modern browsers
— Next lecture!

Content-Security Policy (CSP)

\

Content Security Policy (gsp)ij

« Explicitly allow resources which are trusted by the developer
— Servers declare trusted sources

CSP Workflow

« Explicitly allow resources which are trusted by the developer
— Servers declare trusted sources

https://seonqil.com

Server-side
application

Browser

https://wsplab.com/

CSP Workflow .

« Explicitly allow resources which are trusted by the developer
— Servers declare trusted sources

HTTP/1.1 2000K

Server: Apache/1.3 g "]
Content-Security-Policy: | ERCARSES to retiecte

script-src ‘none’; XSS attacks

<script> —
aler‘t(‘XSS’)

</script> HTTP Response|

-

https://seonqil.com

Browser Server-side

application

https://wsplab.com/

CSP Workflow

« Explicitly allow resources which are trusted by the developer
— Servers declare trusted sources

HTTP/1.1 2000K

Server: Apache/1.3

Content-Security-Policy:
script-src ‘none’;

<script> -
https://seongil.com a].-e rt (XSS) ServerS d6C|aI'e
</script> HTTP Response

trusted sources

Browser

https://wsplab.com/

CSP Workflow N

« Explicitly allow resources which are trusted by the developer
— Servers declare trusted sources

HTTP/1.1 2000K
Server: Apache/1.3

Content-Security-Policy:
script-src ‘none’;

Q<scr‘ipt>

o [alert('
</script>

Xbﬁ’)ézﬁ

HTTP Response

https://seonqil.com

Enforce!

Browser

https://wsplab.com/

Example Policy on paypa*le.com ;

Demo:

https://www.paypal.com/home

https://www.paypal.com/home

Content Security Policy (CSP)@

« Explicitly allow resources which are trusted by the developer
— Servers declare trusted sources

* Disallow dangerous JS constructs like eval or event handlers

* Delivered as HTTP header or In meta element in page
—-HTTP header: Content-Security-Policy: default-src ..

— Meta element: <meta http-equiv=“Content-Security-Policy”
content=“default-src..”>

 Enforced by the browser (all policies must be satisfied)
— Your browser must support CSP for its use

 First candidate recommendation in 2012, currently at Level 3

Browser Support .

& Chrome

Content-Security-Policy - Chrome 59+ Partial Support
Content-Security-Policy - Chrome 40+ Full Support Since January 2015

Content-Security-Policy - Chrome 25+ S .
afari

X-Webkit-CSP - Chrome 14-24

Content-Security-Policy - Safari 15.4+ Partial Support
Content-Security-Policy - Safari 10+

. Content-Security-Policy - Safari 7+
0 Firefox X-Webkit-CSP - Safari 6

Content-Security-Policy - Firefox 58+ Partial Support
Content-Security-Policy - Firefox 31+ Partial Support since July 2014
Content-Security-Policy - Firefox 23+ Full Support

X-Content-Security-Policy - Firefox 4-22
€ Edge

Content-Security-Policy - Edge 79+ Partial Support
Content-Security-Policy - Edge 15+ Partial, 76+ Full
Content-Security-Policy - Edge 12+

CSP Popularity :

500,000

400,000 -

300,000 -

200,000 -

Avg. Daily Records with CSP

100,000
N Q & ™ N Q % ™ N Q % * \ Q
QOO S C ,39 \%0 \%0 ,3;0‘ \qo \qo \qe o O QO
S S S S & S
Quarters

https://www.bitsight.com/blog/content-security-policy-limits-dangerous-activity-so-why-isnt-everyone-doing-it

https://www.bitsight.com/blog/content-security-policy-limits-dangerous-activity-so-why-isnt-everyone-doing-it

Format of CSP ;

Policy := [directive Evaluel];]...

A list of pairs of
directive and values

S
CSP Level 1 - Controlling Scripting Resources

Policy := [directive [valuel];]...

v Directive: script-src
» Specifically controls where scripts can be loaded from
* If provided, inline scripts and eval will not be allowed

v Value: Many different ways to control sources
* ‘none’ — no scripts can be included from any host
* ‘self’ — only own origin
* https://domain.com — allow the script from this origin

* https://*.domain.com — any subdomain of domain.com, any
script on them

 https: — any origin delivered via HTTPs

e ‘unsafe-inline’ / ‘unsafe-eval’ - reenables inline
handlers and eval

CSP Level 1 Demo ;

*

Demo:

https://websec-lab.github.io/courses/2025s-
cse46//demo/csp demo.html

https://websec-lab.github.io/courses/2025s-cse467/demo/csp_demo.html
https://websec-lab.github.io/courses/2025s-cse467/demo/csp_demo.html

Executes scripts only
CSP Level 1 - Example * from the same origin and

CSP for website https://example.com: https://unist.ac.kr

script-src ‘self’ https://unist.ac.kr;

Execution
ATt Allowed?

<script src = “https://unist.ac.kr/myscript.js”></script> V/

<script src = “https://example.com/stuff.js”’></script>

<script>alert(1)</script> // inline script X
X

<script src = “https://ad.com/someads.js”></script>

-
CSP Level 1 - Controlling Additional Resources

eimg-src, style-src, font-src, object-src, media-src
— Controls non-scripting resources: images, CSS, fonts, objects,
audio/video

 frame-src
— Controls from which origins frames may be added to a page

e connect-src
— Controls XMLHttpRequest, WebSockets (and other) connection targets

 default-src
— Serves as fallback for all fetch directives (all of the above)
— Only used when specific directive is absent

I
CSP Level 1 - Limitations

H

* |If our goal is to allow scripts from own origin and inline scripts

— Solution: script-src

‘self’ ‘unsafe-inline’

* Problem: bypasses literally any protection
— Attacker can inject inline JavaScript

* One possible solution: removing Iinline script and converting it

INnto an external script

For each inline script...

<script> convertin
alert(1) A

</script>

Laler‘t(l)

N

<script src=“myscript.js”>
</script>

N

N

1 §eood

N

JS

myscript.js

* Proposed improvement in CSP Level 2: nonces and hashes

I
CSP Level 2 - Nonces anil Hashes

 Allows every inline script adds nonce property
-script-src ‘nonce-%$value’ ‘self’

* Allows Inline scripts based on their SHA hash (SHA256,
SHA384, or SHA512)

-script-src ‘sha256-%$hash’ ‘self’

CSP Level 2 — Example

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53" 'sha256-

S5bf5c8f91b8cbadde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c"

<script> <script>
alert(“My hash is correct”) alert(“incorrect”)
</script> </script>

SHA256 hash value:

5bf5¢c8f91b8cbadde74da363ac497d5acl9
e4595fe39cbdda22cec8445d3814c

CSP Level 2 — Example ;

¥

script-src 'self’ https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53" 'sha256-

S5bf5c8f91b8cbadde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c"

<script> \/ <script> X
alert(“My hash is correct”) alert(“incorrect”)
</script> </script>

SHA256 matches SHA256 does not

value of CSP header match

CSP Level 2 — Example ;

¥

script-src 'self’ https://cdn.example.org

‘nonce-d90e0153c074f6Cc3fcf53" 'sha256-
S5bf5c8f91b8cbadde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c"

<script nonce=“d90e0153c074f6c3fcf53”’>||<script nonce=“nocluehackplz”>
alert(“I will not work™)

alert(“It’s all good”)
</script> \/ </script> X

Script nonce matches Script nonce does not

CSP header match CSP header

CSP Level 2 - Limitationg‘e

script-src 'self' https://cdn.example.org
‘nonce-d90e0153c074f6c3fcf53" 'sha256-

S5bf5c8f91b8cbadde74da363ac497d5ac19e4595fe39cbdda22cec8445d3814c"

<script nonce=“d90e0153c074f6c3fcf53”>
script=document.createElement("script"); BWA[oRalE\ A o glol M= (ST aqleT0)

script.src = "http://ad.com/ad.js"; without nonce
document.body.appendChild(script);

</script>

Does this script work under a
nonce-based policy?

-
Changes from Level 2 to Level 3: Strict-dynamic

« Additional changes: add strict-dynamic

—Allows adding scripts programmatically, eases CSP
deployment in, e.g., ad scenario

* Mostly due to dynamic ADs
- 15t page load: script from ads.com — fancy-cars.com

—-2nd page load: script from ads.com — cheap-ads.net —
dealsdeals.biz

* |dea: propagate trust

—If we trust ads.com, let’s also trust whoever ads.com load
script from

Recap: Chain of Trust

Root CA’s Digital
Certificate

l— z,:'.: : j@
e oot CA’s
Root CA sign public keyl/

Sub CA'’s Digital
Certificate

il AL AL L

Sub CA Signed with A2
I root CA’'s public key

CSP Level 3 - str-ict-dy’r‘leamic Example ;

script-src 'self’ https://cdn.example.org

‘nonce-d90e0153c074f6¢c3fcf53” ‘strict-dynamic’

<script nonce=“d90e0153c074f6c3fcf53”’>
script=document.createElement("script");
script.src = "http://ad.com/ad.js";
document.body.appendChild(script);

</script>

Propagate trust: we also trust this
script, so we allow It to execute

CSP - Bypasses % .

* Does not stop XSS, tries to mitigate its effects

* Problem #1: User input at the trusted script

Problem #1: User Input

script-src ‘nonce-randoml23’ ‘strict-dynamic’;

* What if the injection happens directly at nonced script
elements?

<script nonce=“randoml123”>
script=document.createElement("script");
script.src = user_input + “valid.js";
document.body.appendChild(script);
</script>

Problem #1: User Input . ;

script-src ‘nonce-randoml23’ ‘strict-dynamic’;

* What if the injection happens directly at nonced script
elements?

Executes on the

target origin

<script nonce=“randoml23”’>
script=document.createElement("sg
script.src = user_input + “valid.js";
document.body.appen@hild(script);
</script>

Attacker can inject
attacker.com

CSP - Bypasses % .

* Does not stop XSS, tries to mitigate its effects
* Problem #1: User input at the trusted script

* Problem #2: Developer’s mistake/misconfiguration

Problem #2: Developer’s Mistake/Misconfigurati;n

3
* Developer’s mistake

defalt-src ‘self’

—Typo In the first directive leads to the default-src directive being
missing from the policy (Content Security Problems?, CCS’16)

* Developer’'s misconfiguration

default-src ‘unsafe-inline’ *

—Defining CSP Is hard!
—Many website developers just allow all of the inline script and all hosts

-94.72% of all website bypassible (e.g., misconfigured their CSP)
(CSP Is Dead, Long Live CSP!, CCS’2016)

CSP - Bypasses % .

* Does not stop XSS, tries to mitigate its effects
* Problem #1: User input at the trusted script
* Problem #2: Developer’s mistake/misconfiguration

* Problem #3: Browser bugs (CSP enforcement bugs)

Problem #3: Browser Bugs ;

* NOTE: CSP Is enforced by the browser

T - 6

Chrome

Execute attacker’s

JS code

<?php
header (“HTTP/: 100”);
header (“Content-Security-Policy: default-src ‘self’”)

> _
<script>alert(1)</scrir Expected behavior:
Not execute JS code

(due to 100

Chrome Safari Firefox
status code)

Research Question:
How to find
CSP-related browser bugs?

(FYI) Finding CSP Enforciment ;

Specification
for CSP

Chrome Developer

Specification for CSP: https://www.w3.0rg/TR/CSP3/

https://www.w3.org/TR/CSP3/

(FYI) Finding CSP Enforciment

Specification <Reason: .
for CSP Buggy description

. Misunderstand

| N N

A

Developer

(Incorrectly) Implement
Chro

(FYI) Finding CSP Enforciment

Specification <Reason: .
for CSP Buggy description

. Misunderstand

| N N

A

Developer

(Incorrectly) Implement
Chro

(FYI) Finding CSP Enforciment :

Specification

for CSP

»\ (Incorrectly) Implement _‘

Developer

Implement \ i

Our approach:
Differential testing!

Firefox

(FYI) Finding CSP Enforciment

Specification

for CSP

Safari

Chro

» Not
executed

G@

Testlng CSPs

Testing HTMLs

Flrefox

Not
S st & Due to...

Buggy description \

Misunderstand

(FYI) Finding CSP Enforciment

Specification

for CSP

) mp BN (T

* First testing tool for finding
CSP enforcement bugs

Safari

* Found 27 browser bugs In
Chrome, Safari, and FireFox
Chro » ...and three description bugs

i

v

Testing CSPs

Testing HTMLs

» 23 bugs have been patched
* Published in NDSS’23

* executed

Firefox

-
Recent Studies

- DIffCSP, NDSS ’23

- 12 angry developers, CCS 21

- Complex security policy?, NDSS °20

- CSP is dead, long live CSP!, CCS 16

- Reining in the web with CSP, WWW °10
- CCSP, USENIX Security ’17

- CSPAutoGen, CCS ’'16

Cross-Site Request Forgery
(CSRF) /2

Recap: Cookies &&

Username: Alice
Password: 1234 | E
e (° | App

Set-Cookie: SSID4AEBRE42 &) instagram.com
web server

Hey Instagram,
show me my profile

Cookie: SSID:4AEBRE42 ;

Hello Alice!
Here is your profile Instagram.com

web server

s://instag_gram.com

+
. .
"

https://facebook.com/
https://instagram.com/

Recap: Cookies &&:

 Store a server-created file (cookie) in the browser

« Examples
— Authentication (log in)
— Personalization (language preference, shopping cart)
— User tracking

Q. What if an attacker tricks the user to do unwanted actions?

(e.g., send money to the attacker)

Regular Website Usage .

https://bank.com/transfer.php

Destination account:

123-456-789 <form method=“POST”
Amount: $50 target=*“https://bank.com/transfer.php”>
, <input type=“text” name=“to”>
SUt_)mn <input type=“text” name=“amount”>
\ <input type=“submit”>

Processing
transaction

bank.com

https://bank.com/transfer.php

Cross-Site Request Forgery (CSRF)

https://attacker.com/seecat

attacker.com
web server

victim E

O JApp
bank.com

https://attacker.com/seecat

Cross-Site Renucoct Earnarv (CSRF)

<form method=“POST” id=“transfer”
[YY B | target=“https://bank.com/transfer.php’’>
<input type=“hidden” name=“to” value=“attacker_account”>
= g~ / <input type=“hidden” name=“amount” value=“1000000">
</form>
<script>
transfer.submit();
</script>

victim E

O JApp
bank.com

https://attacker.com/seecat

Cross-Site

https://attacker.com/seecat

victim

(CSRE)

<form method=“POST” id=“transfer”

target=“https://bank.com/transfer.php”’>
<input type=“hidden” name=“to” value=
<input type=“hidden” name=“amount” value="{HE0000E"’ >

</form>

<script>
transfer.submit();

</script>

Attacker can control
these values

.’J>

T O GO T UvOT

Send request!

No user involvement required

bank.com

https://attacker.com/seecat

Cross-Site Renucoct Earnarv (CSRF) ;

4| <form method="POST” id="transfer”
[YY B | target=“https://bank.com/transfer.php’’>

<input type=“hidden” name=“to” value=“attacker_account”>

e v TN / <input type=“hidden” name=“amount” value=“1000000" >

= </form>

<script>

transfer.submit();
</script>

TV O OO T v U1

Processing
transaction

Cross-Site Request Forgery bank.com

https://attacker.com/seecat

Cross-Site Request Forge*[y (CSRF)

* Force a user to execute unwanted actions (e.g., changing state)
on an authenticated web application

o Attack works for GET ...

— Invisible images, hidden iframes, css files, scripts, ...

Cross-Site Request Forgery (CSRF)

* Force a user to execute unwanted actions (e.g., changing state)
on an authenticated web application

o Attack works for GET ...

— Invisible images, hidden iframes, css files, scripts, ...

Browser send request on The image Is not visible, but
behalf of the user (victim) the request goes out

Cross-Site Request Forge*[y (CSRF)

* Force a user to execute unwanted actions (e.g., changing state)
on an authenticated web application

o Attack works for GET ...

— Invisible images, hidden iframes, css files, scripts, ...

« and POST

<form method="POST" action="https://bank.com/transfer.php" id="transfer">
<input type="hidden" name="act-to" value="attacker_account">
<input type="hidden" name="amount" value="100000">

</form>

<script>
transfer.submit()

</script>

Cross-Site Request Forge*[y (CSRF) ;

Very important point:

A web page can send information to any site!

SOP Does Not Control Sinding ;

« SOP violation? Nope!

« Same origin policy (SOP) controls access to DOM

 Active content (scripts) can send a request anywhere!
—No user involvement required

CSRF on Netflix 2006

NARGOS o7

CSRF on Netflix 2006 .

 CSRF vulnerabillities at Netflix allowed the attacker to do:
— Add movies to your rental queue
— Add a movie to the top of your rental queue
— Change the name and address of a victim’s account
— Change the email and password on a victim’'s account

<img
src=“http://www.netflix.com/changeinfo?email=seongil.wi@unist.ac.kr&password=hello”
width=“1”
height="“1”
border=“0">

How to Defense CSRF At*teacks?ﬁj

» Referrer checking: "where is this request coming from?”

— Accept requests only if their referrer is the same as the server (e.g.,
*.bank.com)

Recap: Referrer Header .

GET /csed67.html HTTP/1.1

Host: websec-1lab.com

Accept-Language: en

Connection: keep-alive

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64;)
Referer: http://google.com

Contain the address from which a
resource has been requested

How to Defense CSRF Attacks?@

» Referrer checking: "where is this request coming from?”

— Accept requests only if their referrer is the same as the server (e.g.,
*.bank.com)

« Secret validation token
— For each session, a fresh secret token is generated by the server
— Send requests with the token
— Accept requests only if the token is valid

Secret Validation Token: ;I‘}egular Usage

https://bank.com/transfer.php _

Destination account: <form method="POST™

123-456-789 target="https://bank.com/transfer.php”>
_ <input type=“text” name=“to”>

Amount: .

ount $50 : <input type=“text” name=“amount”>

SUL_)mlt <input type=“hidden” name=‘“token” value=“N73GN9IA”>

<input type=“submit”>

Processing
transaction

bank.com

https://bank.com/transfer.php

Secret Valic! I ' I

<form method=“POST” id=“transfer”
L@ target="“https://bank.com/transfer.php’’>
<input type=“hidden” name=“to” value=“attacker _account”>
~ / <input type=“hidden” name=“amount” value=“1000000">
=3 <input type=“hidden” name=“token” value=“noclue”>

</form>

<script>
transfer.submit();

Invalid token:
No transaction

. , .
victim Am _ l:..k

bank.com

https://attacker.com/seecat

How to Defense CSRF Attacks?@

» Referrer checking: "where is this request coming from?”

— Accept requests only if their referrer is the same as the server (e.g.,
*.bank.com)

« Secret validation token
— For each session, a fresh secret token is generated by the server
— Send requests with the token
— Accept requests only if the token is valid

« SameSite Cookies

I
Same-Site Cookies

 TWo modes
— Strict: browser will NEVER send cookies with cross-origin request

Set-Cookie: session=0F8tgdOhi9ynR1M9wa30Da; SameSite=Strict

— Lax: browser will send the cookie in cross-site requests, but only if both
of the following conditions are met:

* The request uses safe requests (e.g., GET)

* The request resulted from a top-level navigation by the user, such
as clicking on a link

« Until May 2018, only supported by Chrome and Opera
« Since Chrome 80, defaults to SameSite=lax

Clickjacking /2

Re

cap: Browser Executioge Model

* Windows may contain frames from different sources

—Frame: rigid visible division
—1IFrame: floating inline frame

a.com

<iframe src=“b.com”>
</iframe>

Framing other Websites . ;

« HTML supports framing of other (cross-origin sites)
- E.g., iframes
— Very useful feature for advertisement, like buttons, ...

« Embedding site controls most of the frame’s properties
— How large the frame should be
—Where the frame is displayed
- How opaque the frame should be....

What could go wrong?

Clickjacking (Ul Redressng)

 Attacker overlays transparent or opaque frames to trick a
user into clicking on a button or link on another page
000

https://attacker.com/attack.html

<iframe src=‘https://bank.com/payment’ >
</iframe>

g/

victim

Play the game!

https://websec-lab.com/cse467.html

Clickjacking (Ul Redressing)

 Attacker overlays transparent or opaque frames to trick a
user into clicking on a button or link on another page

https://attacker.com/attack.html

<iframe src=‘https://bank.com/payment’ >
</iframe>

g/

victim
)

Remember me

i i -
- by LU

https://websec-lab.com/cse467.html

Clickjacking (Ul Redressng)

 Attacker overlays transparent or opaque frames to trick a
user into clicking on a button or link on another page
000

https://attacker.com/attack.html

<iframe src=‘https://bank.com/payment’ >
</iframe>

‘=/ | HTML attributes
victim style opacity:0.5

Play-inggame! |

https://websec-lab.com/cse467.html

Clickjacking (Ul Redressng) %

 Attacker overlays transparent or opaque frames to trick a
user into clicking on a button or link on another page
000

https://attacker.com/attack.html

<iframe src=‘https://bank.com/payment’ >
</iframe>

‘=/ HTML attributes

victim style opacity:0

Victim will send

money!
Play the game!

https://websec-lab.com/cse467.html

Clickjacking Demo . ;

* Demo: https://websec-lab.github.io/courses/2025s-
csed6//demo/clickjacking_demol.html

https://websec-lab.github.io/courses/2025s-cse467/demo/clickjacking_demo1.html
https://websec-lab.github.io/courses/2025s-cse467/demo/clickjacking_demo1.html

Clickjacking - Hiding the*Target Element %

« Use CSS opacity property and z-index propert

Hide target element

Make other element opacity: 0.1
float under the target
element \'{_ Click
s’ '\

z-index: -1

-
Clickjacking - Fake Curso*[s

« Use CSS cursor property and JavaScript to simulate a fake
cursor icon on the screen

Real cursor icon Fake cursor icon

R

R

Clickjacking - Fake Curso*[s g

« Use CSS cursor property and JavaScript to simulate a fake
cursor icon on the screen

Fake cursor icon

R

Hide real curson icon

by using cursor: none

Cursor Spoofing ;

3k

E. !i. E))

~~_ [Fake cursol]

Adobe Flash Player Settings

Camera and Microphone Access @t

www.webperflab.com is requesting access
to your camera and microphone. If you
click Allow, you may be recorded.

Mec*ac o "o | sperere

[g[g (& Deny |

How to Prevent Clickjacking? @

* Frame busting
— Make sure that my website is not loaded in an enclosing frame

if (top != self)
top.location = self.location

 Use CSP’s frame-ancestors

- Determine whether my website may be embedded in another site
— ‘none’: denies from any host

- ‘self’: allows only from same origin

—http://example.org: allows specific origin

A
el N
;Emr Your Email
Password

Phishing /-

victim

nisT 239

oto|ci3t|

& © user id
[==] pw My password

H|YHS X735}

attacker.com
web server

https://attacker.com/login

Phishing

* Disguising as a trustworthy entity, and obtain private information
— Login credentials
— Financial records

* Links to phishing webpages dispatched to victims through emaill
or SMS

« According to a report from the FBI, it received 800,944 reports
of phishing, with losses exceeding $10.3 billion in 2022

B Microsoft

Sign in

to continue to Outlook

ess, phone number, or Sky

No account? Create one!
Can't access your account?

Sign-in options

Terms of use Privacy &cookies

Ph

1S

h

ing

From: apple.Inc <Update.account. confimed @altervista.org>
To:

Sent: Inursday, Apnl 24, 2014 12:35 PM

Subject: Update your Account information !

éiTunes

Dear iTunes Customer!

Your itunes account has been frozen because we are unable to validate your account information.

Once you have updated your account records, we will try again to validate your information

and your account suspensionwill be lifted. This will help protect your account in the future.

This process does not take more than 3 minutes. To proceed to confirm your account details please click on

the link below and follow the instructions.

Get Stag;dﬂ

If YOU N€€ pevp: 1 1g00.g1/Gkx2HM PUTjHelp left by clicking the Help link located in the upper right-hand
barner of any NP pagss

Sincerely,

Apple Inc

Please do not reply to this email. We are unable to respond to inquiries sent to this address. For immediate answers to your questions,
visit our Help left by clicking "Help" at the top of any Apple page.

Copyright @ 2014 Apple Inc. All rights reserved. Apple is located at 2211 N. First St., San Jose, CA 95131.

Typical Properties of Spoofed Sites

 Attackers manually copy/recreate web content from target website
— Show logos found on the honest site

« Have suspicious URLs: mostly, being camouflaged as a URL that
looks familiar to people

- E.g., umist.ac.kr

 Ask for user input
— Debit card number, username, password, ...

* Phishing content served from attacker-owned web server
— Or a compromised web server

Safe to Type Your Passwgrd?

@ Bank of the West | - Moxzilla Firefox = |
File Edit View History Bookmarks Tools Hel
v c ' \W/home W '] i'%';:_g: P‘

PERSONAL SMALL BUSINESS

BANKWEST b enmvest, comy’|

5T,

Products & Services t h Ew E
Checking “TOUYE TIoTTe

Savings & CDs Buy a new car

Credit Cards Save for college

Loans Maximize home equity

Wealth Management & Trust Consolidate debt

Insurance Try our financial calculators

Learn about online banking
Enroll in eTimeBanker

om/

neBanker
o
Where do | enter my password?
Alternate Login ‘

-

3

5 N T

- ,
857 A

m

Spear Phishing .

* Phishing attempts directed at specific individuals

* This can increase the likelihood of success, as the sender appears
more credible and informed

spear phisheing

[spe

er fish-ing] n

Spear Phishing

From: UDEL HR. <hremployeepayroll@udel edu=
Date: August 13, 2015 at 12:45:29 PM EDT

To: <

Subject: Your August 2015 Paycheck

UNIVERSITY Gf DELAWARE

Hello,

We assessed the 2015 payment structure as provided for under the terms of employment and discovered that
wvou are due for a salary raise starting August 2015,

Your salary raise documents are enclosed below:

Access the documents here

Faithfully
Human Resources

University of Delaware

Spear Phishing

Mrs. Fisun Timsavas <jsc7339@gmail.com>

09-12 (=) , 2T 1:01
Seongil Wi <seongil wi@unist.ac.kr> ¥

S HA 8lx

Hello Seongil Wi,

| am contacting you for the receipt of the sum of US$9,500,000.00 (Nine Million Five Hundred United State

BEJ[Efs) only.

Please Let me know if you are interested,

Regards,
Mrs. Flsun Tdmsavag

How to Detect Phishing?*

« Crowdsourcing, Blacklisting
— lists reported phishing URLs
- E.g., https://openphish.com/

Phishing URL

https://diepost-zoll-ch.com/steps/
https://257.nhksf.com/
https://ffspind7my.terbaru-2023.com/vhsfhgpdhdxih1
https://web.telegram.data-bees.cn/
http://wantlengtime.com/

http://manualmetarestore-39f.pages.dev/

Targeted Brand
Generic/Spear Phishing
Tencent

Garena

Telegram

WhatsApp

Crypto/Wallet

Time

06:24:20

06:18:49

06:17:46

06:17:26

06:16:08

06:15:36

https://openphish.com/

How to Detect Phishing?* ;

Require human intervention and

« Crowdsourcing, Blacklisting

: . verification
— lists reported phIShl.ng URLs Phishers are starting to use one-
- E.g., https://openphish.com/ time URLS

 URL-based pattern detection
- E.g., AURL is phishy if its length > 76
- E.g., Brand name modification with ‘-’
= youtube-x.com

logo mail address or phone number jnpuUt
fUCEbOOk ASSW input

_ P] - |
» Content-based pattern detection

e button

block

Icroau a Page for a celebrity, band or business. |
text label

https://openphish.com/

O
Conclusion

« Content Security Policy (CSP)
— Allow resources which are trusted by the developer

» Cross-Site Request Forgery (CSRF)
— Force a user to execute unwanted actions

* Clickjacking

— Attackers overlays opagque frames to trick a user

* Phishing
— Disguising as a trustworthy entity, and obtain private information

Question?

	Slide 1
	Slide 2: HW2: Web Hacking Competition
	Slide 3: HW2: Web Hacking Competition
	Slide 4: HW2: Web Hacking Competition
	Slide 5: HW2: Web Hacking Competition
	Slide 6: Recap: How to Prevent XSS Attacks?
	Slide 7: Content-Security Policy (CSP)
	Slide 8: Content Security Policy (CSP)
	Slide 9: CSP Workflow
	Slide 10: CSP Workflow
	Slide 11: CSP Workflow
	Slide 12: CSP Workflow
	Slide 13: Example Policy on paypal.com
	Slide 14: Content Security Policy (CSP)
	Slide 15: Browser Support
	Slide 16: CSP Popularity
	Slide 17: Format of CSP
	Slide 18: CSP Level 1 – Controlling Scripting Resources
	Slide 19: CSP Level 1 Demo
	Slide 20: CSP Level 1 – Example
	Slide 21: CSP Level 1 – Controlling Additional Resources
	Slide 24: CSP Level 1 – Limitations
	Slide 25: CSP Level 2 – Nonces and Hashes
	Slide 26: CSP Level 2 – Example
	Slide 27: CSP Level 2 – Example
	Slide 28: CSP Level 2 – Example
	Slide 29: CSP Level 2 – Limitations
	Slide 30: Changes from Level 2 to Level 3: Strict-dynamic
	Slide 31: Recap: Chain of Trust
	Slide 32: CSP Level 3 – strict-dynamic Example
	Slide 33: CSP – Bypasses
	Slide 34: Problem #1: User Input
	Slide 35: Problem #1: User Input
	Slide 36: CSP – Bypasses
	Slide 37: Problem #2: Developer’s Mistake/Misconfiguration
	Slide 38: CSP – Bypasses
	Slide 39: Problem #3: Browser Bugs
	Slide 40: Research Question: How to find CSP-related browser bugs?
	Slide 41: (FYI) Finding CSP Enforcement
	Slide 42: (FYI) Finding CSP Enforcement
	Slide 43: (FYI) Finding CSP Enforcement
	Slide 44: (FYI) Finding CSP Enforcement
	Slide 45: (FYI) Finding CSP Enforcement
	Slide 46: (FYI) Finding CSP Enforcement
	Slide 47: Recent Studies
	Slide 48: Cross-Site Request Forgery (CSRF)
	Slide 49: Recap: Cookies
	Slide 50: Recap: Cookies
	Slide 51: Regular Website Usage
	Slide 52: Cross-Site Request Forgery (CSRF)
	Slide 53: Cross-Site Request Forgery (CSRF)
	Slide 54: Cross-Site Request Forgery (CSRF)
	Slide 55: Cross-Site Request Forgery (CSRF)
	Slide 56: Cross-Site Request Forgery (CSRF)
	Slide 57: Cross-Site Request Forgery (CSRF)
	Slide 58: Cross-Site Request Forgery (CSRF)
	Slide 59: Cross-Site Request Forgery (CSRF)
	Slide 60: SOP Does Not Control Sending
	Slide 61: CSRF on Netflix 2006
	Slide 62: CSRF on Netflix 2006
	Slide 63: How to Defense CSRF Attacks?
	Slide 64: Recap: Referrer Header
	Slide 65: How to Defense CSRF Attacks?
	Slide 66: Secret Validation Token: Regular Usage
	Slide 67: Secret Validation Token: Preventing CSRF
	Slide 68: How to Defense CSRF Attacks?
	Slide 69: Same-Site Cookies
	Slide 70: Clickjacking
	Slide 71: Recap: Browser Execution Model
	Slide 72: Framing other Websites
	Slide 73: Clickjacking (UI Redressing)
	Slide 74: Clickjacking (UI Redressing)
	Slide 75: Clickjacking (UI Redressing)
	Slide 76: Clickjacking (UI Redressing)
	Slide 77: Clickjacking Demo
	Slide 78: Clickjacking – Hiding the Target Element
	Slide 79: Clickjacking - Fake Cursors
	Slide 80: Clickjacking - Fake Cursors
	Slide 81: Cursor Spoofing
	Slide 82: How to Prevent Clickjacking?
	Slide 83: Phishing
	Slide 84: Phishing
	Slide 85: Phishing
	Slide 86
	Slide 87: Phishing
	Slide 88: Typical Properties of Spoofed Sites
	Slide 89: Safe to Type Your Password?
	Slide 90: Spear Phishing
	Slide 91: Spear Phishing
	Slide 92: Spear Phishing
	Slide 93: How to Detect Phishing?
	Slide 94: How to Detect Phishing?
	Slide 95: Conclusion
	Slide 96: Question?

