»*

NiST

TTTTTTTTTTTTTTTTTTTTTT
nnnnnnnnnnnnnnnnnnnn

CSE467: Computer Security
16. ROP

Seongil Wi

Department of Computer Science and Engineering
The slide is based on Prof. Sang Kil Cha’s lecture slide

Motivation Z

Direct code injection%

Canary W

VU

Memory leak .

How we bypass
NX/DEP?

Code-Reuse Attacks

Bypassing DEP .

* Return-to-stack exploit is disabled

« But, we can still jump to an arbitrary address of existing code
(= Code Reuse Attack)

-
Main Idea: Jump to Existing Code

return address
old ebp (= 0)

line

Main Idea: Jump to Existing Code g

Arbitrary address

Jump to the existing code

space, not to the stack

Code Reuse Attack #1: Return-to-Libc

* LIBC (LIBrary C) is a standard library that most programs
commonly use

—For example, printfisin LIBC

« Many useful functions in LIBC to execute
—exec family: execl, execlp, execle, ..
—system
—mprotect
—mmap

Code Reuse Attack #1: Rgturn-to-Libc

return address
old ebp (= 0)

line

Code Reuse Attack #1: Rgturn-to-Libc g

Argument to system

Addr. of “/bin/sh”
Dummy value Why we insert dummy value?

Addr:of system

Return to systemin Libc
old ebp (= 0)

Dummy
value

“/bin/sh” No injected shellcode!
Just inject a string value

Recap: Function Call (call)

High argument ‘
esp

call system

nextret:
push nextret

nop

jmp system

nop

system (in libc):

nop

nop Low

Virtual memory

Recap: Function Call (call)

High argument
nextret

1‘lesp

call system

nextret:
push nextret

nop

jmp system

nop

system (in libc):

nop

nop Low

Virtual memory

Recap: Function Call (call)

High

argument

nextret

1‘Iesp

call system

nextret:
push nextret
nop jmp system
nop

system (in libc):

nop

nop

Recognize esp+0x4
as first parameter Virtual memory

Recap: LIBC provides Sys*teem Call Wrappe;

08049162 <main>:

8049162: 55 push ebp
8049163: 89 e5 mov ebp,esp
8049165: 83 ec 08 sub esp,Ox8

8049168: c7 45 8 08 a0 04 08 mov DWORD PTR [ebp-0x8],0x804a008
804916f: c7 45 fc 00 00 00 00 mov DWORD PTR [ebp-0x4],0x0
8049176: 6a 00 push Ox0

8049178: 8d 45 8 lea eax, [e First argument of execve
804917b: 50 push eax

804917c: 68 98 ab 04 08 nhush Ox804a008
8049181: e8 c7 29 02 00 call 806c4b0o <

execve>

You are actually calling a wrapper

function around the syscall

Recap: LIBC provides Sys*teem Call Wrappe¥r

0806c4b0 < execve>:

806c4b0: 53 push ebx

806c4b1l: 8b 54 24 160 mov edx,DWORD PTR [esp+0x10]

806c4b5: 8b 4c 24 0Oc mov ecx,DWORD PTR [esp+OxcC]

806c4b9: 8b 5c 24 08 mov ebx,DWORD PTR [esp+Ox8]

806c4bd: b8 ©b 00 00 00 mov eax, 0xb

806c4c2: cd 80 int Ox 80 ,
Get first

argument

Code Reuse Attack #1: Rgturn-to-Libc z

Argument to system

Addr. of “/bin/sh”
Dummy value Fake return address!

Addr:of system

Return to system
old ebp (= 0)

Dummy
value

“/bin/sh” No injected shellcode!
Just inject a string value

Motivation of Return-oriented Programming

Return-to-LIBC requires LIBC function calls, but ...®
* Different versions of LIBC

attacker_ local@environment:~$ 1ldd --version
ldd (Ubuntu GLIBC 2.31-Qubuntu9.17) 2.31

L,

victim@environment:/# ldd --version
ldd (Ubuntu GLIBC 2.27-3ubuntul) 2.27

-
Motivation of Return-oriented Programming

Return-to-LIBC requires LIBC function calls, but ...®
* Different versions of LIBC

 LIBC may not be used at all
« Some functions in LIBC can be excluded

attacker_ local@environment:~$ 1ldd --version
ldd (Ubuntu GLIBC 2.31-Qubuntu9.17) 2.31

L,

victim@environment:/# ldd --version
ldd (Ubuntu GLIBC 2.27-3ubuntul) 2.27

-
Motivation of Return-oriented Programming

Return-to-LIBC requires LIBC function calls, but ...®
* Different versions of LIBC

 LIBC may not be used at all
« Some functions in LIBC can be excluded

attacker_ local@environment:~$ 1ldd --version
ldd (Ubuntu GLIBC 2.31-Qubuntu9.17) 2.31

Can we spawn a shell

without the use of LIBC functions?

Return-oriented
Programming (ROP)

Code Reuse Attack #2: RQP

Generalized Code Reuse Attack

Formally introduced by Hovav in CCS 2007

“The Geometry of Innocent Flesh on the Bone: Return-to-libc

without Function Calls (on the x86)”

The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86)

Hovav Shacham*
hovav@cs.ucsd.edu

Abstract

‘We present new techniques that allow a return-into-libc attack to be mounted on x86 exe-
cutables that calls no functions at all. Our attack combines a large number of short instruction
sequences to build gadgets that allow arbitrary computation. We show how to discover such
instruction sequences by means of static analysis. We make use, in an essential way, of the
properties of the x86 instruction set.

1 Introduction

We present new techniques that allow a return-into-libe attack to be mounted on x86 executables
that is every bit as powerful as code injection. We thus demonstrate that the widely deployed
“WepX” defense, which rules out code injection but allows return-into-libc attacks, is much less
useful than previously thought.

Attacks using our technique call no functions whatsoever. In fact, the use instruction sequences
from libe that weren’t placed there by the assembler. This makes our attack resilient to defenses
that remove certain functions from libe or change the assembler’s code generation choices.

Unlike previous attacks, ours combines a large number of short instruction sequences to build

Main ldea: Return (ret) Chaining

Attacker’s goal.
execute following instructions

add
mov
inc
mov

eax, ebx
ecx, eax
ecx

edx, 42

return address

old ebp (= 0)

line

Main Idea: Return (ret) Chaining 2

3
Attacker’s goal. 42
execute following instructions Address of C
add eax, ebx Address of B
Address: of A
mov ecx, eax esp
inc ecx old ebp (= 0)
mov edx, 42

Dummy
value

Main Idea: Return (ret) Chaining ;

¥

Attacker’s goal. 42
execute following instructions Address of C
add eax, ebx Address of B
) esp
mov ecx, eax Address: of A
inc ecx old ebp (= 0)
mov edx, 42 Somewhere in the

binary code

Dummy
value

add eax, ebx
ret

Main Idea: Return (ret) Chaining ;

*

Attacker’s goal. 42

execute following instructions Address of C
add eax, ebx esp Address of B
mov ecx, eax Address: of A
1nc ecx ROP Gadget: PR)
mov_edx, 42 Instruction sequence

that ends with ret

Dummy
value

add eax, ebx
ret

Main Idea: Return (ret) Chaining ;

%3
Attacker’s goal. 42
execute following instructions Address of C
add eax, ebx Address of B
- esp

mov ecx, eax Address: of A
inc ecx old ebp (= 0)
mov edx, 42

Dummy
value

add eax, ebx
ret

Main Idea: Return (ret) Chaining g

3
Attacker’s goal. 42
execute following instructions esp Address of C
add eax, ebx Address of B
mov ecx, eax Address:of A
inc ecx old ebp (= 0)
mov edx, 42 pop eip

= jump to another

Dummy
value

gadget

d eax, ebx
ret

Main Idea: Return (ret) Chaining ;

.3
Attacker’s goal. 42
execute following instructions Address of C
add eax, ebx Address of B
mov ecx, eax Address: of A

inc ecx old ebp (= 0)
mov edx, 42

mov ecx, eax

ret Dummy
value

add eax, ebx
ret

A

Main Idea: Return (ret) Chaining ;

.3
Attacker’s goal. 42
execute following instructions Address of C
add eax, ebx Address of B
mov ecx, eax Address: of A

inc ecx old ebp (= 0)
mov edx, 42

mov ecx, eax

ret Dummy
value

add eax, ebx
ret

A

Main Idea: Return (ret) Chaining ;

.3
Attacker’s goal. 42

execute following instructions | Address of C

add eax, ebx Epe—— Address of B
mov ecx, eax C pop edx Address: of A
inc ecx ret old ebp (= 0)

mov edx, 42

mov ecx, eax

ret Dummy
value

add eax, ebx
ret

A

Main Idea: Return (ret) Chaining ;

*

Attacker’s goal. ooP 42

execute following instructions Address of C

add eax, ebx inc Scx Address of B
mov ecx, eax C pop edx Address: of A
inc ecx ret old ebp (= 0)

mov edx, 42

mov ecx, eax

ret Dummy
value

add eax, ebx
ret

A

Main Idea: Return (ret) Chaining ;

.3
Attacker’s goal. 42
execute following instructions Address of C
add eax, ebx inc Scx Address of B
mov ecx, eax C pop edx Address: of A
inc ecx ret old ebp (= 0)
mov edx, 42

mov ecx, eax
ret Dmmy

B

Return chaining with ROP gadgets

allows arbitrary computation!

ROP Workflow ;

3
1. Disassemble binary

2. ldentify useful instruction sequences (i.e., gadgets)
- E.g., an instruction sequence that ends with ret is useful
- E.g., an instruction sequence that ends with jmp reg can be useful
(pop eax; jmp eax)

3. Assemble gadgets to perform some computation
- E.g., spawning a shell

Challenge: Gathering as many gadgets as possible

Many Gadgets In Regula; Binaries?

x86 instructions have their lengths ranging from 1 byte to 18
bytes, i.e., it uses variable-length encoding

x86 instructions have

variable lengths

08048aac <main>;

8048aac: ('8d 4c 24 04) lea ecx, [esp+0x4]

8048abo: 83 e4 fO and esp,oxfffffffo

8048ab3: f 71 fc push DWORD PTR [ecx-0x4]
8048ab6: 55 push ebp

8048ab7: 89 e5 mov ebp,esp

8048ab9: 51 push ecx

8048aba: 83 ec 14 sub esp,0x14

8048abd: c7 45 f0 88 ad Qa 08 mov DWORD PTR [ebp-0x10],0x80aad88
8048ac4.: c7 45 f4 00 00 00 00 mov DWORD PTR [ebp-0xc],0x0
8048ach: 83 ec 04 sub esp, x4

8048ace: 6a 00 push 0x0

8048ado: 8d 45 f0 lea eax, [ebp-0x10]

8048ad3: 50 push eax

8048ad4: 68 88 ad Qa 08 push Ox80aad88

8048ad9: e8 02 39 01 00 call 805c3e@ <__execve>

. J

Many Gadgets in Regular Binaries?

x86 instructions have their lengths ranging from 1 byte to 18
bytes, i.e., it uses variable-length encoding

Therefore, there can be both intended and unintended gadgets
In Xx86 binaries

SN
Disassembling x86

eip
e8 05 ff ff ff call 8048330
81l ¢c3 59 12 00 09 add ebx,0x1259

What if we disassemble the code

from the second byte (65)?

S
Unintended ret Insturction

eip
e8 05 ff ff ff add eax, Ox81ffffff
81 ¢c3 59 12 00 00 ret

Totally different, but still valid instructions!

Unintended ret Insturcti*ce)n

eip

e8 05 ff ff ff add eax, Ox81ffffff
81 c3 59 12 00 00 ret

Unintended ret Insturcti*ce)n

eip

e8 05 ff ff ff add eax, Ox81ffffff
81 c3 59 12 00 00 ret

Many Gadgets In Regula; Binaries?

Also, program size may matter!

Larger code = More chance to get useful gadgets

Many Gadgets in Regular Binaries?

Also, program size may matter!

Larger code = More chance to get useful gadgets

Exploit Hardening Made Easy,
USENIX Security 2011

Show that 100KB was enough to
successfully create exploits for
80% of the binaries in /usr/bin

Q: Exploit Hardening Made Easy

Edward J. Schwartz, Thanassis Avgerinos and David Brumley
Carnegie Mellon University, Pittsburgh, PA

Abstract

Prior work has shown that return oriented programming
(ROP) can be used to bypass WX, a software defense
that stops shellcode, by reusing instructions from large
libraries such as libc. Modern operating systems have
since enabled address randomization (ASLR), which ran-
domizes the location of libc, making these techniques
unusable in practice. However, modern ASLR implemen-
tations leave smaller amounts of executable code unran-
domized and it has been unclear whether an attacker can
use these small code fragments to construct payloads in
the general case.

In this paper, we show defenses as currently deployed
can be bvpassed with new techniaues for automaticallv

{edmcman, thanassis, dbrumley} @ cmu.edu

could be to spawn a remote shell to control the program,
to install malware, or to exfiltrate sensitive information
stored by the program.

Luckily, modern OSes now employ WéX and ASLR
together — two defenses intended to thwart control flow
hijacks. Write xor eXecute (WEX, also known as DEP)
prevents an attacker’s payload itself from being directly
executed. Address space layout randomization (ASLR)
prevents an attacker from utilizing structures within the
application itself as a payload by randomizing the ad-
dresses of program segments. These two defenses, when
used together, make control flow hijack vulnerabilities
difficult to exploit.

HAauvravvaer AQT R and WTMY ara not anfarcrad ~om

Question g

.3
How can we mitigate code reuse attacks (ROP)?

Address randomization (ASLR)!

(next lecture)

DEP and Code Reuse Attgcks

XO" g \
\J < xS
‘e‘\)‘ o‘ e QQO‘ 1“01\ . 0‘\
e &l e\ o PP
\ o b \& G
© Q o ! N
\)((\ ’\\ s O o\) o\
a0Y A e® et e ?
¢ e @ O ©
¢

i ——

1997 2000 2004 2007 2012

Control Hijack Attack / Defense So Far g

Direct code injection V7

NX/DEP 0, Canary W

Code-reuse attacks |

e.g., ROP) & Memory leak

ASLR W

Arms Race in Security

The law and order arms race...

NE'WODFIUETHUI MMM SUDOUED | DNIDMNI 3 5.2-8002

Summary .

» Code reuse attacks allow an attacker to bypass DEP

 Many mitigation techniques are proposed for code reuse
attacks, which will be covered next

Question?

	Slide 1
	Slide 2: Motivation
	Slide 3: Code-Reuse Attacks
	Slide 4: Bypassing DEP
	Slide 5: Main Idea: Jump to Existing Code
	Slide 6: Main Idea: Jump to Existing Code
	Slide 7: Code Reuse Attack #1: Return-to-Libc
	Slide 8: Code Reuse Attack #1: Return-to-Libc
	Slide 9: Code Reuse Attack #1: Return-to-Libc
	Slide 10: Recap: Function Call (call)
	Slide 11: Recap: Function Call (call)
	Slide 12: Recap: Function Call (call)
	Slide 13: Recap: LIBC provides System Call Wrapper
	Slide 14: Recap: LIBC provides System Call Wrapper
	Slide 15: Code Reuse Attack #1: Return-to-Libc
	Slide 16: Motivation of Return-oriented Programming
	Slide 17: Motivation of Return-oriented Programming
	Slide 18: Motivation of Return-oriented Programming
	Slide 19: Return-oriented Programming (ROP)
	Slide 20: Code Reuse Attack #2: ROP
	Slide 21: Main Idea: Return (ret) Chaining
	Slide 22: Main Idea: Return (ret) Chaining
	Slide 23: Main Idea: Return (ret) Chaining
	Slide 24: Main Idea: Return (ret) Chaining
	Slide 25: Main Idea: Return (ret) Chaining
	Slide 26: Main Idea: Return (ret) Chaining
	Slide 27: Main Idea: Return (ret) Chaining
	Slide 28: Main Idea: Return (ret) Chaining
	Slide 29: Main Idea: Return (ret) Chaining
	Slide 30: Main Idea: Return (ret) Chaining
	Slide 31: Main Idea: Return (ret) Chaining
	Slide 34: ROP Workflow
	Slide 35: Many Gadgets in Regular Binaries?
	Slide 36: Many Gadgets in Regular Binaries?
	Slide 37: Disassembling x86
	Slide 38: Unintended ret Insturction
	Slide 39: Unintended ret Insturction
	Slide 40: Unintended ret Insturction
	Slide 41: Many Gadgets in Regular Binaries?
	Slide 42: Many Gadgets in Regular Binaries?
	Slide 43: Question
	Slide 44: DEP and Code Reuse Attacks
	Slide 45: Control Hijack Attack / Defense So Far
	Slide 46: Arms Race in Security
	Slide 47: Summary
	Slide 48: Question?

