
16. ROP

Seongil Wi

Department of Computer Science and Engineering

CSE467: Computer Security

The slide is based on Prof. Sang Kil Cha’s lecture slide

Motivation 2

Direct code injection

NX/DEP Canary

Memory leak

How we bypass

NX/DEP?

Code-Reuse Attacks

Bypassing DEP

• Return-to-stack exploit is disabled

• But, we can still jump to an arbitrary address of existing code
(= Code Reuse Attack)

4

Main Idea: Jump to Existing Code 5

return address

old ebp (= 0)

line

Main Idea: Jump to Existing Code 6

return address

old ebp (= 0)

line

Arbitrary address

Jump to the existing code

space, not to the stack

Code Reuse Attack #1: Return-to-Libc

• LIBC (LIBrary C) is a standard library that most programs
commonly use

−For example, printf is in LIBC

• Many useful functions in LIBC to execute

−exec family: execl, execlp, execle, …

−system

−mprotect

−mmap

7

Code Reuse Attack #1: Return-to-Libc 8

return address

old ebp (= 0)

line

Code Reuse Attack #1: Return-to-Libc 9

return address

old ebp (= 0)

line

No injected shellcode!

Just inject a string value

Return to system in Libc

Argument to system

Why we insert dummy value?

Dummy
value

“/bin/sh”

old ebp (= 0)

Addr. of system

Addr. of “/bin/sh”

Dummy value

10Recap: Function Call (call)

…

 call system

nextret:

 nop

 nop

 ...

system (in libc):

 nop

 nop

push nextret
jmp system

Virtual memory

argument

Low

High
esp

11Recap: Function Call (call)

…

 call system

nextret:

 nop

 nop

 ...

system (in libc):

 nop

 nop

push nextret
jmp system

Virtual memory

argument

nextret

Low

High

esp

12Recap: Function Call (call)

…

 call system

nextret:

 nop

 nop

 ...

system (in libc):

 nop

 nop

push nextret
jmp system

Virtual memory

argument

nextret

Low

High

esp

Recognize esp+0x4

as first parameter

Recap: LIBC provides System Call Wrapper13

08049162 <main>:
8049162: 55 push ebp
8049163: 89 e5 mov ebp,esp
8049165: 83 ec 08 sub esp,0x8
8049168: c7 45 f8 08 a0 04 08 mov DWORD PTR [ebp-0x8],0x804a008
804916f: c7 45 fc 00 00 00 00 mov DWORD PTR [ebp-0x4],0x0
8049176: 6a 00 push 0x0
8049178: 8d 45 f8 lea eax,[ebp-0x8]
804917b: 50 push eax
804917c: 68 08 a0 04 08 push 0x804a008
8049181: e8 c7 29 02 00 call 806c4b0 <__execve>

You are actually calling a wrapper

function around the syscall

First argument of execve

Recap: LIBC provides System Call Wrapper14

0806c4b0 <__execve>:
806c4b0: 53 push ebx

 806c4b1: 8b 54 24 10 mov edx,DWORD PTR [esp+0x10]
806c4b5: 8b 4c 24 0c mov ecx,DWORD PTR [esp+0xc]
806c4b9: 8b 5c 24 08 mov ebx,DWORD PTR [esp+0x8]
806c4bd: b8 0b 00 00 00 mov eax,0xb

 806c4c2: cd 80 int 0x80

System Call!

LIBC code

Get first

argument

Code Reuse Attack #1: Return-to-Libc 15

return address

old ebp (= 0)

line

Addr. of “/bin/sh”

Dummy value

Addr. of system

old ebp (= 0)

Dummy
value

“/bin/sh” No injected shellcode!

Just inject a string value

Return to system

Argument to system

Fake return address!

Motivation of Return-oriented Programming

Return-to-LIBC requires LIBC function calls, but …

• Different versions of LIBC

16

attacker_local@environment:~$ ldd --version
ldd (Ubuntu GLIBC 2.31-0ubuntu9.17) 2.31

victim@environment:/# ldd --version
ldd (Ubuntu GLIBC 2.27-3ubuntu1) 2.27

Motivation of Return-oriented Programming

Return-to-LIBC requires LIBC function calls, but …

• Different versions of LIBC

• LIBC may not be used at all

• Some functions in LIBC can be excluded

17

attacker_local@environment:~$ ldd --version
ldd (Ubuntu GLIBC 2.31-0ubuntu9.17) 2.31

victim@environment:/# ldd --version
ldd (Ubuntu GLIBC 2.27-3ubuntu1) 2.27

Motivation of Return-oriented Programming

Return-to-LIBC requires LIBC function calls, but …

• Different versions of LIBC

• LIBC may not be used at all

• Some functions in LIBC can be excluded

18

attacker_local@environment:~$ ldd --version
ldd (Ubuntu GLIBC 2.31-0ubuntu9.17) 2.31

victim@environment:/# ldd --version
ldd (Ubuntu GLIBC 2.27-3ubuntu1) 2.27

Can we spawn a shell

without the use of LIBC functions?

Return-oriented
Programming (ROP)

Code Reuse Attack #2: ROP

Generalized Code Reuse Attack

Formally introduced by Hovav in CCS 2007

“The Geometry of Innocent Flesh on the Bone: Return-to-libc
without Function Calls (on the x86)”

20

Main Idea: Return (ret) Chaining 21

Attacker’s goal:

execute following instructions

return address

old ebp (= 0)

line

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

Main Idea: Return (ret) Chaining 22

Attacker’s goal:

execute following instructions

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

return address

old ebp (= 0)

line

42

Address of C

Address of B

Address of A

old ebp (= 0)

Dummy
value

esp

Main Idea: Return (ret) Chaining 23

Attacker’s goal:

execute following instructions

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

return address

old ebp (= 0)

line

42

Address of C

Address of B

Address of A

old ebp (= 0)

Dummy
value

A
add eax, ebx
ret

Somewhere in the

binary code

esp

Main Idea: Return (ret) Chaining 24

Attacker’s goal:

execute following instructions

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

return address

old ebp (= 0)

line

42

Address of C

Address of B

Address of A

old ebp (= 0)

Dummy
value

A
add eax, ebx
ret

ROP Gadget:

Instruction sequence

that ends with ret

esp

Main Idea: Return (ret) Chaining 25

Attacker’s goal:

execute following instructions

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

return address

old ebp (= 0)

line

42

Address of C

Address of B

Address of A

old ebp (= 0)

Dummy
value

A
add eax, ebx
ret

esp

Main Idea: Return (ret) Chaining 26

Attacker’s goal:

execute following instructions

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

return address

old ebp (= 0)

line

42

Address of C

Address of B

Address of A

old ebp (= 0)

Dummy
value

A
add eax, ebx
ret

pop eip
= jump to another

gadget

esp

Main Idea: Return (ret) Chaining 27

Attacker’s goal:

execute following instructions

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

return address

old ebp (= 0)

line

42

Address of C

Address of B

Address of A

old ebp (= 0)

Dummy
value

A
add eax, ebx
ret

B
mov ecx, eax
ret

esp

Main Idea: Return (ret) Chaining 28

Attacker’s goal:

execute following instructions

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

return address

old ebp (= 0)

line

42

Address of C

Address of B

Address of A

old ebp (= 0)

Dummy
value

A
add eax, ebx
ret

B
mov ecx, eax
ret

esp

Main Idea: Return (ret) Chaining 29

Attacker’s goal:

execute following instructions

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

return address

old ebp (= 0)

line

42

Address of C

Address of B

Address of A

old ebp (= 0)

Dummy
value

A
add eax, ebx
ret

B
mov ecx, eax
ret

C
inc ecx
pop edx
ret

esp

Main Idea: Return (ret) Chaining 30

Attacker’s goal:

execute following instructions

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

return address

old ebp (= 0)

line

42

Address of C

Address of B

Address of A

old ebp (= 0)

Dummy
value

A
add eax, ebx
ret

B
mov ecx, eax
ret

C
inc ecx
pop edx
ret

esp

Main Idea: Return (ret) Chaining 31

Attacker’s goal:

execute following instructions

add eax, ebx
mov ecx, eax
inc ecx
mov edx, 42

return address

old ebp (= 0)

line

42

Address of C

Address of B

Address of A

old ebp (= 0)

Dummy
value

A
add eax, ebx
ret

B
mov ecx, eax
ret

C
inc ecx
pop edx
ret

Return chaining with ROP gadgets

allows arbitrary computation!

ROP Workflow

1. Disassemble binary

2. Identify useful instruction sequences (i.e., gadgets)
− E.g., an instruction sequence that ends with ret is useful

− E.g., an instruction sequence that ends with jmp reg can be useful

(pop eax; jmp eax)

3. Assemble gadgets to perform some computation
− E.g., spawning a shell

34

Challenge: Gathering as many gadgets as possible

Many Gadgets in Regular Binaries? 35

x86 instructions have their lengths ranging from 1 byte to 18
bytes, i.e., it uses variable-length encoding

Many Gadgets in Regular Binaries?

x86 instructions have their lengths ranging from 1 byte to 18
bytes, i.e., it uses variable-length encoding

Therefore, there can be both intended and unintended gadgets
in x86 binaries

36

Disassembling x86 37

e8 05 ff ff ff
81 c3 59 12 00 00

call 8048330
add ebx,0x1259

eip

What if we disassemble the code
from the second byte (05)?

Unintended ret Insturction 38

e8 05 ff ff ff
81 c3 59 12 00 00

add eax, 0x81ffffff
ret

eip

Totally different, but still valid instructions!

Unintended ret Insturction 39

e8 05 ff ff ff
81 c3 59 12 00 00

add eax, 0x81ffffff
ret

eip

Unintended ret Insturction 40

e8 05 ff ff ff
81 c3 59 12 00 00

add eax, 0x81ffffff
ret

eip

Many Gadgets in Regular Binaries?

Also, program size may matter!

Larger code ⇒ More chance to get useful gadgets

41

Many Gadgets in Regular Binaries?

Also, program size may matter!

Larger code ⇒ More chance to get useful gadgets

42

Exploit Hardening Made Easy,

USENIX Security 2011

Show that 100KB was enough to

successfully create exploits for

80% of the binaries in /usr/bin

Question

How can we mitigate code reuse attacks (ROP)?

43

Address randomization (ASLR)!

(next lecture)

DEP and Code Reuse Attacks 44

1997 2000 2004 2007 2012 Today

Control Hijack Attack / Defense So Far 45

Direct code injection

NX/DEP Canary

Memory leak
Code-reuse attacks

(e.g., ROP)

ASLR

Arms Race in Security 46

Summary

• Code reuse attacks allow an attacker to bypass DEP

• Many mitigation techniques are proposed for code reuse
attacks, which will be covered next

47

Question?

	Slide 1
	Slide 2: Motivation
	Slide 3: Code-Reuse Attacks
	Slide 4: Bypassing DEP
	Slide 5: Main Idea: Jump to Existing Code
	Slide 6: Main Idea: Jump to Existing Code
	Slide 7: Code Reuse Attack #1: Return-to-Libc
	Slide 8: Code Reuse Attack #1: Return-to-Libc
	Slide 9: Code Reuse Attack #1: Return-to-Libc
	Slide 10: Recap: Function Call (call)
	Slide 11: Recap: Function Call (call)
	Slide 12: Recap: Function Call (call)
	Slide 13: Recap: LIBC provides System Call Wrapper
	Slide 14: Recap: LIBC provides System Call Wrapper
	Slide 15: Code Reuse Attack #1: Return-to-Libc
	Slide 16: Motivation of Return-oriented Programming
	Slide 17: Motivation of Return-oriented Programming
	Slide 18: Motivation of Return-oriented Programming
	Slide 19: Return-oriented Programming (ROP)
	Slide 20: Code Reuse Attack #2: ROP
	Slide 21: Main Idea: Return (ret) Chaining
	Slide 22: Main Idea: Return (ret) Chaining
	Slide 23: Main Idea: Return (ret) Chaining
	Slide 24: Main Idea: Return (ret) Chaining
	Slide 25: Main Idea: Return (ret) Chaining
	Slide 26: Main Idea: Return (ret) Chaining
	Slide 27: Main Idea: Return (ret) Chaining
	Slide 28: Main Idea: Return (ret) Chaining
	Slide 29: Main Idea: Return (ret) Chaining
	Slide 30: Main Idea: Return (ret) Chaining
	Slide 31: Main Idea: Return (ret) Chaining
	Slide 34: ROP Workflow
	Slide 35: Many Gadgets in Regular Binaries?
	Slide 36: Many Gadgets in Regular Binaries?
	Slide 37: Disassembling x86
	Slide 38: Unintended ret Insturction
	Slide 39: Unintended ret Insturction
	Slide 40: Unintended ret Insturction
	Slide 41: Many Gadgets in Regular Binaries?
	Slide 42: Many Gadgets in Regular Binaries?
	Slide 43: Question
	Slide 44: DEP and Code Reuse Attacks
	Slide 45: Control Hijack Attack / Defense So Far
	Slide 46: Arms Race in Security
	Slide 47: Summary
	Slide 48: Question?

