
22. Access Control

Seongil Wi

Department of Computer Science and Engineering

CSE467: Computer Security



Notification: Final Exam

• Date: 6/18 (Class time)

• Scope: All contents learned in this semester

2



Operating System Security 

• One of the main goal of OS: resource sharing
− A lot of requests from multiple users/programs for resources

• Important question: how to securely share resources?
− What if someone else abruptly read/write my data/code in memory?

− What if someone else intentionally change my password?

3



Principle of Least Privilege 4

“Every program and every privileged user of the system should operate 

using the least amount of privilege necessary to complete the job”

- Jerome Saltzer, Protection and the Control of Information Sharing in Multics, CACM, 1973 



Access Control

• Rules and policies that limit access to confidential information

• Determine what users have permission to do

• Permission is determined by identity (e.g., name, serial) or role 

(e.g., professor, TA, student) 

• Defense against attacks in the first place!

• Access control is every where: not only OS
− E.g., hardware, databases, network, etc.

5



Question!

• What topics we covered in class are related to access control?

6



Access Control Method: Reference Monitor

• Check if a subject (user) can perform an operation on an 
object (resource)

• Three key properties:
− Must be always invoked

− Must be tamper-proof

− Must be easy to verify

7

Resource

(object)

User

(subject)

Policy

Privileged?
Operation Yes

No



Access Control Policy 

• Discretionary access control (DAC) 
− All objects have owners

− What permission to grant others? Owners can decide

− E.g., Unix, Windows, etc.

• Mandatory access control (MAC)
− What permission to grant others? Only the admin can decide

− Users cannot change policy themselves

− E.g., SELinux, military, etc.

8

How does one grant the right level of permission to an individual?



Access Control Policy 

• Discretionary access control (DAC) 
− All objects have owners

− What permission to grant others? Owners can decide

− E.g., Unix, Windows, etc.

• Mandatory access control (MAC)
− What permission to grant others? Only the admin can decide

− Users cannot change policy themselves

− E.g., SELinux, military, etc.

9

How does one grant the right level of permission to an individual?



Access Control Matrix

• Relationship among subjects (users), objects (resources), and 
permissions

10

/etc/passwd /usr/bin/ /home/prof/exam/ /home/admin/

root rw rwx rwx rwx

professor r rx rwx -

ta r rx r -

student1 r rx - -

student2 r rx - -



/etc/passwd /usr/bin/ /home/prof/exam/ /home/admin/

root rw rwx rwx rwx

professor r rx rwx -

ta r rx r -

student1 r rx - -

student2 r rx - -

Access Control Matrix

• Relationship among subjects (users), objects (resources), and 
permissions

11

Permission, 

Access Control Entry (ACE)

Object

Subject Problems?



/etc/passwd /usr/bin/ /home/prof/exam/ /home/admin/

root rw rwx rwx rwx

professor r rx rwx -

ta r rx r -

student1 r rx - -

student2 r rx - -

Problem #1: Matrix Size

• Relationship among subjects (users), objects (resources), and 
permissions

12

As the number of subjects and 

objects increases, a large size of 

memory is required



/etc/passwd /usr/bin/ /home/prof/exam/ /home/admin/

root rw rwx rwx rwx

professor r rx rwx -

ta r rx r -

student1 r rx - -

student2 r rx - -

Problem #2: Useless Space

• Relationship among subjects (users), objects (resources), and 
permissions

13

Memory space 

is wasted



/etc/passwd /usr/bin/ /home/prof/exam/ /home/admin/

root rw rwx rwx rwx

professor r rx rwx -

ta r rx r -

student1 r rx - -

student2 r rx - -

Solution

• Relationship among subjects (users), objects (resources), and 
permissions

14

We need to 

manage metrics by 

row or column



/etc/passwd /usr/bin/ /home/prof/exam/ /home/admin/

root rw rwx rwx rwx

professor r rx rwx -

ta r rx r -

student1 r rx - -

student2 r rx - -

Two Approaches for DAC

• Relationship among subjects (users), objects (resources), and 
permissions

15

Object-oriented approach: Access Control List (ACL)

Subject-oriented approach: Capability



Access Control List (ACL)

• Object-centered approach

• Widely used in many operating systems as a basic access 
control method

− E.g., Unix file system

• Approve requests if the subject has privilege to perform the 
operation on the object

16

/etc/passwd

root rw

professor r

ta r

student1 r

student2 r

/usr/bin/

root rwx

professor rx

ta rx

student1 rx

student2 rx

/home/prof/exam/

root rwx

professor rwx

/home/admin/

root rwx



ACL – Example 17

retfunc

retfunc rx

student x

flag.txt

retfunc rw

student -
student

retfunc retfunc

Subject Object

flag.txt



ACL – Example 18

Problem?

retfunc

retfunc rx

student x

flag.txt

retfunc rw

student -
student

retfunc retfunc

Subject Object

flag.txt



19ACL Limitation: Confused Deputy Problem

student retfunc flag.txt

Confused 

Deputy 

Problem
ReadExecute

(with command

 “read flag.txt!”)

retfunc

retfunc rx

student x

flag.txt

retfunc rw

student -
student

retfunc retfunc

Subject Object

flag.txt



20ACL Limitation: Confused Deputy Problem

student retfunc flag.txt

retfunc

retfunc rx

student x

flag.txt

retfunc rw

student -
student

retfunc retfunc

Subject Object

flag.txt

Confused 

Deputy 

Problem
ReadExecute

(with command

 “read flag.txt!”)

No

violation!



21Confused Deputy Problem: Real-World Example



22Confused Deputy Problem: Root Cause

student retfunc flag.txt

Confused 

Deputy 

Problem
ReadExecute

(with command

 “read flag.txt!”)

No

violation!

• A subject that is tricked by another subject (with fewer 
privileges) into misusing its authority 

• It is a specific type of privilege escalation

Root cause: the deputy (retfunc) got confused

• student is not permitted to read the flag.txt file

• retfunc confuses its own permissions with the 

student's permissions



Simple Solution 23

student retfunc flag.txt
ReadExecute

(with command

 “read flag.txt!”)

Delegate authority:

Student should passing both the object (flag.txt) 

it want to read, and a permission token (-)

⇒ Capability



/etc/passwd /usr/bin/ /home/prof/exam/ /home/admin/

root rw rwx rwx rwx

professor r rx rwx -

ta r rx r -

student1 r rx - -

student2 r rx - -

Two Approaches for DAC

• Relationship among subjects (users), objects (resources), and 
permissions

24

Object-oriented approach: Access Control List (ACL)

Subject-oriented approach: Capability



Capability

• Subject-centered approach

• Capability: a pair of an object and a set of privileges

• A deputy (retfunc) could ask its requester (subject) to provide 
a capability and use it to request resources

• Mostly used for more secure operating systems (E.g., KeyKOS)
− Also partly used in main stream OS such as Linux 

25

retfunc flag.txt

retfunc rx rw

retfunc flag.txt

student x -



Capability – Example 26

retfunc flag.txt

retfunc rx rw

retfunc flag.txt

student x -

student

retfunc retfunc

Subject Object

flag.txt

student retfunc flag.txt
Execute

(with command

 “read flag.txt!”)



Capability – Example 27

retfunc flag.txt

retfunc rx rw

retfunc flag.txt

student x -

student

retfunc retfunc

Subject Object

flag.txt

student retfunc flag.txt
Execute

(with command

 “read flag.txt!”)

Request flag.txt based 

on student’s capability



ACL vs. Capabilities

• ACL: “for each object, which subjects have permissions?” 
− More efficient to implement

− Confused deputy problem

• Capabilities: “for each subject, which objects are allowed to be 
accessed?” 

− More secure by fine-grained access control 

− Easier to avoid the confused deputy (More secure)

− More difficult to implement

• Then, capability-based approach is secure enough? 

28



Trojan Horse 

• A type of malware that disguises itself as legitimate code

29

Dear Professor,

I found and fixed a functional bug in the 
retfunc. Here is the patched one

void retfunc(...) {
    ...
+ if (user == “professor”) {
+   flag = read(“flag.txt”); 
+   write(“/tmp/myown.txt”, flag);
+ }
} 

Thanks a lot! I will give you bonus points!



Trojan Horse 30

retfunc flag.txt /tmp/myown.txt

professor  x rw rw

retfunc flag.txt /tmp/myown.txt

student  x - rw

retfunc

professor

student

flag.txt

if (user == “professor”) {
+   flag = read(“flag.txt”); 
+   write(“/tmp/myown.txt”, flag);
+ }

/tmp/myown.txt

Flag 

value



Trojan Horse 31

retfunc flag.txt /tmp/myown.txt

professor  x rw rw

retfunc flag.txt /tmp/myown.txt

student  x - rw

retfunc

professor

student

flag.txt

/tmp/myown.txt

Flag 

value

if (user == “professor”) {
+   flag = read(“flag.txt”); 
+   write(“/tmp/myown.txt”, flag);
+ }



Exploitation

• Why this happen?
− Malware or buggy SW

− Attacker’s intention with the user’s privileges

− No way to tell the difference between the legitimate software and a 
Trojan

• How to avoid this?
− More restrictive access control (later this lecture)

− Program analysis (later this semester)

32



Lessons from DAC

• Access control: not an easy problem
− Balance between usability and security

• Well-known issues 
− Confused deputy: protected by capability-based systems

− Trojan horse: do not trust programs from unknown sources

33



Real World Example: Unix

• Each process has a user id
− Inherit from the parent process

− Special root id: all access allowed

• Each file has an access control list (ACL)
− Grants permission to users

− Owner, group, other

34

su3604@ubuntu:~$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin

User id



Unix File Access Control List

• Each file has an owner and group

• Permissions set by owners
− {read, write, execute} x {owner, group, other}

• Only owners and root can change permissions

35

rwx  rwx  rwx

owner group other



Unix File Access Control List

• Each file has an owner and group

• Permissions set by owners
− {read, write, execute} x {owner, group, other}

• Only owners and root can change permissions

• Q: How can we run processes on behalf of someone else?
− E.g., password change

     (passwd)

36

rwx  rwx  rwx

owner group other

setuid if it is ‘s’

retfunc@ubuntu$ ls -l /etc/passwd
-rw-r--r-- 1 root root 2970 Oct 22  2023 /etc/passwd



User ID

• Each process has three IDs in Unix

• Real user ID (RUID)
− Same as the user ID of the parent

− To determine which user started the process

• Effective user ID (EUID)
− From “Set User ID” bit on the file being executed or system calls

− To determine the permissions for the process

• Saved user ID (SUID)
− To restore previous EUID

37



User ID

• Each process has three IDs in Unix

• Real user ID (RUID)
− Same as the user ID of the parent

− To determine which user started the process

• Effective user ID (EUID)
− From “Set User ID” bit on the file being executed or system calls

− To determine the permissions for the process

• Saved user ID (SUID)
− To restore previous EUID

38

retfunc@ubuntu$ ls -al /usr/bin/passwd
-rwsr-xr-x 1 root root 68208 Feb  6  2024 /usr/bin/passwd



User ID

• Each process has three IDs in Unix

• Real user ID (RUID)
− Same as the user ID of the parent

− To determine which user started the process

• Effective user ID (EUID)
− From “Set User ID” bit on the file being executed or system calls

− To determine the permissions for the process

• Saved user ID (SUID)
− To restore previous EUID

39

retfunc@ubuntu$ ls -al /usr/bin/passwd
-rwsr-xr-x 1 root root 68208 Feb  6  2024 /usr/bin/passwd

If you execute /usr/bin/passwd,

the EUID of the process is “root”

retfunc@ubuntu$ ls -l /etc/passwd
-rw-r--r-- 1 root root 2970 Oct 22  2023 /etc/passwd

It is possible to 

write data from

/usr/bin/passwd



Access Control Policy 

• Discretionary access control (DAC) 
− All objects have owners

− What permission to grant others? Owners can decide

− E.g., Unix, Windows, etc.

• Mandatory access control (MAC)
− What permission to grant others? Only the admin can decide

− Users cannot change policy themselves

− E.g., SELinux, military, etc.

41

How does one grant the right level of permission to an individual?



Mandatory Access Control (MAC)

• The system assigns both subjects and objects special security 
attributes

− E.g., top secret, unclassified

• Privileges cannot be changed by users but by system 
administrators

• More restrictive and secure than discretionary access control

• Mostly used in security-critical systems (e.g., military)

42



Multilevel Security (MLS)

• Most common form of mandatory access control

• Developed by the US Department of Defense
− All information (objects) possesses a classification

− All person (subject) posses a classification (or clearance)

• Access is allowed if the person’s class is higher than the 
information' class

43



Security Classification

• Two components: security level (sensitivity) and compartment 
(category)

• Security level: a total ordered (small) set
− Access is allowed if the subject’s level is higher than the objects’ level

− e.g., UNCLASSFIED < CONFIDENTIAL < SECRET < TOP SECRET

• Compartment: a set of categories
− Access allowed if subject’s compartments includes object’s 

compartments

− E.g., {MILITARY, ECONOMY, ENVIRONMENT}

44



Classification Lattice

• The combination of security level and compartment forms a lattice
− E.g., Security level = {TOP SECRET, SECRET}, 

           Compartment = {Army, Nuclear}

• Lattice (SC, ⊑ ): a partially ordered set that satisfies the followings 
(SC = Security level + Compartment)

− Reflexivity: ∀𝑥 ∈ 𝑆𝐶. 𝒙 ⊑ 𝒙 

− Transitivity: ∀𝑥, 𝑦, 𝑧 ∈ 𝑆𝐶. 𝒙 ⊑ 𝒚 ∧ 𝒚 ⊑ 𝒛 ⟹  𝒙 ⊑ 𝒛

− Anti-symmetry: ∀𝑥, 𝑦 ∈ 𝑆𝐶. 𝒙 ⊑ 𝒚 ∧ 𝒚 ⊑ 𝒙 ⟹  𝒙 = 𝒚

− Order: ⟨𝑆1, 𝐶1⟩ ⊑ ⟨𝑆2, 𝐶2⟩  ⟺  𝑺𝟏 ≤ 𝑺𝟐 ∧ 𝑪𝟏 ⊆ 𝑪𝟐 

45



Classification Lattice – Example 

• The combination of security level and compartment forms a lattice
− E.g., Security level = {TOP SECRET, SECRET}, 

           Compartment = {Army, Nuclear}

− All possible set:

▪ Security level: TOP SECRET or SECRET

▪ Compartment: ∅, {Army}, {Nuclear}, {Army, Nuclear}

46



Classification Lattice – Example 

• The combination of security level and compartment forms a lattice
− E.g., Security level = {TOP SECRET, SECRET}, 

           Compartment = {Army, Nuclear}

47

<Top Secret, {Army, Nuclear}>

<Secret, {Army, Nuclear}>
<Top Secret, {Nuclear}><Top Secret, {Army}>

<Top Secret, ∅>

<Secret, ∅>

<Secret, {Nuclear}><Secret, {Army}>



Classification Lattice – Example 

• The combination of security level and compartment forms a lattice
− E.g., Security level = {TOP SECRET, SECRET}, 

           Compartment = {Army, Nuclear}

48

<Top Secret, {Army, Nuclear}>

<Secret, {Army, Nuclear}>
<Top Secret, {Army}>

<Top Secret, ∅>

<Secret, ∅>

<Secret, {Nuclear}>

<Top Secret, {Nuclear}>

<Secret, {Army}>

File’s classification:

<Top Secret, {Nuclear}>

User’s classification:

<Secret, {Army}>

Access denied



<Secret, {Army}>

Classification Lattice – Example 

• The combination of security level and compartment forms a lattice
− E.g., Security level = {TOP SECRET, SECRET}, 

           Compartment = {Army, Nuclear}

49

<Secret, {Army, Nuclear}>
<Top Secret, {Army}>

<Top Secret, ∅>

<Secret, ∅>

<Secret, {Nuclear}>

<Top Secret, {Nuclear}>

File’s classification:

<Top Secret, {Nuclear}>

User’s classification:

<Top Secret, {Army, Nuclear}>

<Top Secret, {Army, Nuclear}>

<Top Secret, {Nuclear}> ⊑ <Top Secret, {Army, Nuclear}>



<Top Secret, {Nuclear}>

<Secret, {Army}>

Classification Lattice – Example 

• The combination of security level and compartment forms a lattice
− E.g., Security level = {TOP SECRET, SECRET}, 

           Compartment = {Army, Nuclear}

50

<Secret, {Army, Nuclear}>
<Top Secret, {Army}>

<Secret, ∅>

<Secret, {Nuclear}>

File’s classification:

<Top Secret, ∅>

User’s classification:

<Top Secret, {Army, Nuclear}>

<Top Secret, {Army, Nuclear}>

<Top Secret, ∅ > ⊑ <Top Secret, {Army, Nuclear}>

<Top Secret, ∅>



The Bell-LaPadula Model (BLP)

• The first mathematical model of a multilevel secure system in 1973

• Main concern: prevent information leak (confidentiality)
− Ensures that information do not flow from higher security class to 

lower/incomparable class

• Idea:
− Lower class subjects cannot read higher class objects (NO READ UP)

− Higher class subjects cannot write lower class objects (NO WRITE DOWN)

51



The BLP Model: Properties

• Simple property (NO READ UP):
− a subject at a given security level may not read an object at a higher 

security level

• *-property (NO WIRTE DOWN)
− a subject at a given security level may not write to any object at a 

lower security level

52

TOP SECRET Level

SECRET Level

TOP SECRET

File 

SECRET

File 

TOP SECRET

Process

SECRET

Process

Read ✓ / write ✓

Read✓ / write✓



The BLP Model: Properties

• Simple property (NO READ UP):
− a subject at a given security level may not read an object at a higher 

security level

• *-property (NO WIRTE DOWN)
− a subject at a given security level may not write to any object at a 

lower security level

53

TOP SECRET Level

SECRET Level

TOP SECRET

File 

SECRET

File 

TOP SECRET

Process

SECRET

Process

Read ✓ / write ✓

Read✓ / write✓

By *-property

By simple-property



Pros and Cons of BLP

• Pros: confidentiality

• When is BLP useful?
− NO READ UP, NO WRITE DOWN = READ DOWN, WRITE UP

− Reporting system (e.g., government, military, school)

• Cons: integrity
− Attackers cannot read secret information, but what about write?

− E.g., fake announcement

54



The Biba Model

• Dual of BLP

• Main concern: prevent unauthorized change (integrity)
− from lower class to higher class

• Idea:
− Lower class subjects cannot write higher class objects (NO WRITE UP)

− Higher class subjects cannot read lower class objects (NO READ DOWN) 

55



The Biba Model: Properties

• *-property (NO WRITE UP):
− a subject at a given security level may not write an object at a higher 

security level

• Simple property (NO READ DOWN)
− a subject at a given security level may not read to any object at a 

lower security level

56

TOP SECRET Level

SECRET Level

TOP SECRET

File 

SECRET

File 

TOP SECRET

Process

SECRET

Process

Read ✓ / write ✓

Read✓ / write✓



The Biba Model: Properties

• *-property (NO WRITE UP):
− a subject at a given security level may not write an object at a higher 

security level

• Simple property (NO READ DOWN)
− a subject at a given security level may not read to any object at a 

lower security level

57

TOP SECRET Level

SECRET Level

TOP SECRET

File 

SECRET

File 

TOP SECRET

Process

SECRET

Process

Read ✓ / write ✓

Read✓ / write✓

By simple-property

By *-property



Pros and Cons of Biba

• Pros: integrity

• When is BLP useful?
− NO WRITE UP, NO READ DOWN = WRITE DOWN, READ UP

− Notification system (i.e., important notice won’t be compromised)

• Cons: confidentiality

58



BLP vs. Biba

• BLP and Biba are mutually exclusive in the same classification

• But, confidentiality and integrity can coexist in the same system
− In their own independent classifications

59



Summary

• Access control: determine what users have permission to do

• Discretionary access control (DAC): owner’s discretionary 
− ACL-based: more usable but the confused deputy problem can occur

− Capability-based: more secure but still Trojan can occur

• Mandatory Access Control (MAC): admin’s policy
− BLP (confidentiality) vs Biba (integrity) 

• Which (combination of) models to choose? depending on the 
systems and goals 

60


	Slide 1
	Slide 2: Notification: Final Exam
	Slide 3: Operating System Security 
	Slide 4: Principle of Least Privilege
	Slide 5: Access Control
	Slide 6: Question!
	Slide 7: Access Control Method: Reference Monitor
	Slide 8: Access Control Policy 
	Slide 9: Access Control Policy 
	Slide 10: Access Control Matrix
	Slide 11: Access Control Matrix
	Slide 12: Problem #1: Matrix Size
	Slide 13: Problem #2: Useless Space
	Slide 14: Solution
	Slide 15: Two Approaches for DAC
	Slide 16: Access Control List (ACL)
	Slide 17: ACL – Example
	Slide 18: ACL – Example
	Slide 19: ACL Limitation: Confused Deputy Problem
	Slide 20: ACL Limitation: Confused Deputy Problem
	Slide 21: Confused Deputy Problem: Real-World Example
	Slide 22: Confused Deputy Problem: Root Cause
	Slide 23: Simple Solution
	Slide 24: Two Approaches for DAC
	Slide 25: Capability
	Slide 26: Capability – Example 
	Slide 27: Capability – Example 
	Slide 28: ACL vs. Capabilities
	Slide 29: Trojan Horse 
	Slide 30: Trojan Horse
	Slide 31: Trojan Horse
	Slide 32: Exploitation
	Slide 33: Lessons from DAC
	Slide 34: Real World Example: Unix
	Slide 35: Unix File Access Control List
	Slide 36: Unix File Access Control List
	Slide 37: User ID
	Slide 38: User ID
	Slide 39: User ID
	Slide 41: Access Control Policy 
	Slide 42: Mandatory Access Control (MAC)
	Slide 43: Multilevel Security (MLS)
	Slide 44: Security Classification
	Slide 45: Classification Lattice
	Slide 46: Classification Lattice – Example 
	Slide 47: Classification Lattice – Example 
	Slide 48: Classification Lattice – Example 
	Slide 49: Classification Lattice – Example 
	Slide 50: Classification Lattice – Example 
	Slide 51: The Bell-LaPadula Model (BLP)
	Slide 52: The BLP Model: Properties
	Slide 53: The BLP Model: Properties
	Slide 54: Pros and Cons of BLP
	Slide 55: The Biba Model
	Slide 56: The Biba Model: Properties
	Slide 57: The Biba Model: Properties
	Slide 58: Pros and Cons of Biba
	Slide 59: BLP vs. Biba
	Slide 60: Summary

