TTTTTTTTTTTTTTTTTTTTTT
nnnnnnnnnnnnnnnnnnnn

CSE467: Computer Security

22. Access Control

Seongil Wi

Department of Computer Science and Engineering

Notification: Final Exam .

« Date: 6/18 (Class time)
» Scope: All contents learned in this semester

Operating System Securi;c‘y

* One of the main goal of OS: resource sharing
— A lot of requests from multiple users/programs for resources

Web Browser / CPU
Game a —» Memory
g — File
/
Word Processor ey
Network

* Important question: how to securely share resources?
—What if someone else abruptly read/write my data/code in memory?
—What if someone else intentionally change my password?

Principle of Least Privile%e

“Every program and every privileged user of the system should operate
using the least amount of privilege necessary to complete the job”

- Jerome Saltzer, Protection and the Control of Information Sharing in Multics, CACM, 1973

en-US
~% ImagingDevices

| ImagingEngine Open

Least privileged | PhotoBase.dll Pin to Start

Send to

I Cut
Copy

Device drivers

& Delete

Device drivers
Properties

Applications

| PhotoViewer.d| Scan with Win
] Pin to taskbar

Restore previo)nknown publisher to make changes to your

device?

Most privileged Create shortcy

| PhotoAcq.dil | % Run as administrator

User Account Control b o

Do you want to allow this app from an

cmd.exe

Publisher: Unknown
File origin: Hard drive on this computer

< Show more details

.
Access Control

* Rules and policies that limit access to confidential information
* Determine what users have permission to do

* Permission is determined by identity (e.g., name, serial) or role
(e.g., professor, TA, student)

« Defense against attacks in the first place!

« Access control is every where: not only OS
- E.g., hardware, databases, network, etc.

Question! ;

¥

* What topics we covered in class are related to access control?

S
Access Control Method: ;I‘}eference Monitor

* Check if a subject (user) can perform an operation on an
object (resource)

* Three key properties:
— Must be always invoked
- Must be tamper-proof
- Must be easy to verify

User Operation Yes

Privileged? Resource

(subject)

(object)

-
Access Control Policy

How does one grant the right level of permission to an individual?

* Discretionary access control (DAC)
— All objects have owners
— What permission to grant others”? Owners can decide
- E.g., Unix, Windows, etc.

 Mandatory access control (MAC)
—What permission to grant others? Only the admin can decide
— Users cannot change policy themselves
- E.g., SELinux, military, etc.

-
Access Control Policy

How does one grant the right level of permission to an individual?

* Discretionary access control (DAC)

— All objects have owners
— What permission to grant others”? Owners can decide
- E.g., Unix, Windows, etc.

 Mandatory access control (MAC)
—What permission to grant others? Only the admin can decide
— Users cannot change policy themselves
- E.g., SELinux, military, etc.

Access Control Matrix . %

» Relationship among subjects (users), objects (resources), and
permissions

/etc/passwd | /usr/bin/ | /home/prof/exam/ | /home/admin/

root rw PWX PWX PWX
professor r rX PWX -

ta r X r -
studentl r rX - -

student2 P rX - -

Access Control Matrix . ;

* Relationship among subjects (users), objects (resources), and

/etc/passwd | /usr/bin/ | /home/prof/exam/ | /home/admin/
root rw PwX rwX rwX
professor r rX PWX -
ta r rX r -
studentl r rXx - -
student2 r rXx - -

Subject Permission,

Access Control Entry (ACE) Problems?

Problem #1: Matrix Size* ;

* Relationship among subjects (users), objects (resources), and

permissions
/etc/passwd | /usr/bin/ | /home/prof/exam/ | /home/admin /===
root rw PWX rwX PrwX
professor r rX PWX -
ta -

As the number of subjects and
JALIENYK] Objects increases, a large size of -
student?2 memory Is required

}

Problem #2: Useless Spaie g

* Relationship among subjects (users), objects (resources), and
permissions

/etc/passwd | /usr/bin/ | /home/prof/exam/ | /home/admin/

root rw PWX PWX PwX

professor r rX PWX
ta r rX r

studentl r rXx

student2 rXx

Memory space

IS wasted

Solution

%3
» Relationship among subjects (users), objects (resources), and
permissions
/etc/passwd
root rw

professor r

ta

"X

/usr/bin/} /home/prof/exam/ | /home/admin/
rwX

"X

studentl

FX We need to

student2

rx manage meftrics by

row or column

Two Approaches for DA(;‘e

* Relationship among subjects (users), objects (resources), and

permissions
/etc/passwd] /usr/bin/] /home/prof/exam/ | /home/admin/
root rw
ta rX
student1l rXx
student2 rXx - -

Object-oriented approach: Access Control List (ACL)
Subject-oriented approach: Capability

Access Control List (ACL)*

* Object-centered approach

* Widely used in many operating systems as a basic access
control method
- E.g., Unix file system

« Approve requests if the subject has privilege to perform the
operation on the object

/etc/passwd /usr/bin/ /home/prof/exam/
root rPW root PWX root PWX
professor r professor rX professor rWX
ta r ta rX
studentl r studentl rXx /home/admin/
student2 r student2 rXx root rwx

ACL - Example

[

retfunc

student

"~ Object

retfunc

flag.txt

retfunc
retfunc rX
student X

flag.txt
retfunc rw
student -

ACL - Example g

retfunc
retfunc rX
student X
retfunc retfunc
flag.txt
retfunc rw

student -

student flag.txt

ACL Limitation: Confused Deputy Problem

retfunc
retfunc rX
student X

flag.txt
retfunc rw

student

W|th command
‘ “read flag.txt!”) ‘ \ F
‘-) —/ Execute Read

Confused

Deputy
Problem student retfunc flag.txt

ACL Limitation: Confused Deputy Proble@

retfunc
retfunc rX
student X

retfunc P .
No
student

violation!

W|th command
“read flag xt!”)
(n)
—/ Execute Read

Confused

Deputy
Problem student retfunc flag.txt

Confused Deputy Problem:;‘I}eaI-World Examp

Confused deputy: How did the
vulnerability affect Slack?

A major SAML vulnerability was found in Slack that
granted expired login credentials permission into the
system. Matt Pascucci explains how this '‘confused
deputy' problem was handled.

Matthew Pascucci

w\%‘/\”omv

Security researchers found a major SAML vulnerability in Slack's

implementation that led to what's called a confused deputy issue. How
does the SAML vulnerability work, and what is the confused deputy
problem?

AOSP > Secure > Bulletins {‘fﬁﬁf«’{:{
Android Security Bulletin—January 2021

Published January 4, 2021 | Updated January 7, 2021

The Android Security Bulletin contains details of security vulnerabilities affecting Android devices. Security patch levels
of 2021-01-05 or later address all of these issues. To learn how to check a device's security patch level, see Check and
update your Android version [4.

Android partners are notified of all issues at least a month before publication. Source code patches for these issues have
been released to the Android Open Source Project (AOSP) repository and linked from this bulletin. This bulletin also
includes links to patches outside of AOSP.

The most severe of these issues is a critical security vulnerability in the System component that could enable a remote
attacker using a specially crafted transmission to execute arbitrary code within the context of a privileged process. The
severity assessment is based on the effect that exploiting the vulnerability would possibly have on an affected device,
assuming the platform and service mitigations are turned off for development purposes or if successfully bypassed.

S

N
Q About SektionEins Services News Contact Yy 0O =

OS X 10.10 DYLD_PRINT_TO_FILE Local Privilege
Escalation Vulnerability

Stefan Esser — 2015-07-07 17:30

The DYLD_PRINT_TO_FILE environment variable can be used for local privilege escalation in OS X Yosemite.

Introduction

With the release of OS X 10.10 Apple added some new features to the dynamic linker dyld. One of these features is the new environment variable DYLD_PRINT_TO_FILE
that enables error logging to an arbitrary file.

DYLD_PRINT_TO_FILE

This is a path to a (writable) file. Normally, the dynamic linker writes all logging output (triggered by DYLD_PRINT_ x
settings) to file descriptor 2 (which is usually stderr). But this setting causes the dynamic linker to write logging
output to the specified file.

When this variable was added the usual safeguards that are required when adding support for new environment variables to the dynamic linker have not been used.
Therefore it is possible to use this new feature even with SUID root binaries. This is dangerous, because it allows to open or create arbitrary files owned by the root user
anywhere in the file system. Furthermore the opened log file is never closed and therefore its file descriptor is leaked into processes spawned by SUID binaries. This means

child p of SUID root pi can write to arbitrary files owned by the root user anywhere in the filesystem. This allows for easy privilege escalation in OS X
10.10.x.

Confused Deputy Proble;n: Root Cause

* A subject that is tricked by another subject (with fewer
privileges) into misusing its authority

* |t is a specific type of privilege escalation

"Root cause: the deputy (retfunc) got confused)
« student is not permitted to read the flag. txt file
* retfunc confuses its own permissions with the

__student's permissions Y No
violation!

W|th command
Confused “read flag xt!”)
Deput
puty ‘-) —/ Execute Read

Problem student retfunc flag.txt

Simple Solution ;

Delegate authority:
Student should passing both the object (flag.txt)

it want to read, and a permission token (-)
= Capability

(with command
‘ ‘ “read flag.txt!”) ‘ \ F
) —/ Execute

~ student retfunc flag.txt

Two Approaches for DA(;‘e

» Relationship among subjects (users), objects (resources), and

permissions
/etc/passwd] /usr/bin/] /home/prof/exam/ | /home/admin/
root rw
ta rX
student1l rXx
student2 rXx - -

Object-oriented approach: Access Control List (ACL)
Subject-oriented approach: Capability

Capability .

* Subject-centered approach
« Capability: a pair of an object and a set of privileges

* A deputy (retfunc) could ask its requester (subject) to provide
a capability and use it to request resources

* Mostly used for more secure operating systems (E.g., KeyKOS)
— Also partly used in main stream OS such as Linux

retfunc |flag.txt retfunc |flag.txt
student X - retfunc rXx rw

Capability — Example

retfunc |[flag.txt
retfunc rX rw

retfunc |flag.txt

student X -

(with command
‘ “read flag.txt!”) ‘ \ F
‘-) —/ Execute

~ student retfunc flag.txt

Capability — Example . ;

retfunc |[flag.txt
retfunc rX rw

retfunc retfunc

§

student Request flag. txt based
""""""""""""" on student’s capability

retfunc |flag.txt

student X -

(with command
)

A ‘ “read flag.txt!”
). g.IXxt
g —/ Execute

student retfunc

ACL vs. Capabilities . ;

« ACL: "for each object, which subjects have permissions?”
— More efficient to implement
— Confused deputy problem

« Capabilities: “for each subject, which objects are allowed to be
accessed?”
— More secure by fine-grained access control
— Easier to avoid the confused deputy (More secure)
— More difficult to implement

* Then, capability-based approach is secure enough?

Trojan Horse .

* A type of malware that disguises itself as legitimate code

Dear Professor,
o

‘u) | found and fixed a functional bug in the
.2. retfunc. Here is the patched one

void retfunc(...) {

+ if (user == “professor”) {
+ flag = read(“flag.txt”);
write(“/tmp/myown.txt”, flag);

-+
+)
¥

Thanks a lot! | will give you bonus points!

Trojan Horse

retfunc [flag.txt| /tmp/myown. txt
professor X rw rw
professor
retfunc [flag.txt| /tmp/myown.txt
student X - rw

-/

student

if (user ==

+)

“professor”) {
+ flag = read(“flag.txt”);
+ write(“/tmp/myown.txt”, flag);

retfunc

Flag
value

/tmp/myown. txt

Trojan Horse

retfunc [flag.txt| /tmp/myown. txt
professor X rw rw
professor
retfunc [flag.txt| /tmp/myown.txt
student X - rw

student

if (user == “professor”) {
+ flag = read(“flag.txt”);
+ write(“/tmp/myown.txt”, flag);

+)

/tmp/myown. txt

Exploitation

Why this happen?
— Malware or buggy SW
— Attacker’s intention with the user’s privileges
— No way to tell the difference between the legitimate software and a

TrOj a n User Account Control
Do you want to allow this app from an
unknown publisher to make changes to your
device?
cmd.exe
. . Pyblisher. Unknowr\ .
® H OW to avo I d th IS ? File origin: Hard drive on this computer
— More restrictive access control (later this lecture)
Yes No

— Program analysis (later this semester)

Lessons from DAC .

* Access control: not an easy problem
— Balance between usability and security

 Well-known issues

— Confused deputy: protected by capability-based systems
— Trojan horse: do not trust programs from unknown sources

Real World Example: Uni;)k(

su3604@ubuntu:~$% cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin

« Each process has a user id
— Inherit from the parent process
— Special root id: all access allowed

User id

« Each file has an access control list (ACL)

— Grants permission to users

— Owner, group, other
Filel File2

O ——
Unix File Access ControI;L.ist

« Each file has an owner and group

* Permissions set by owners
—{read, write, execute} x {owner, group, other}

* Only owners and root can change permissions

lrWXl lrWXl lrWXl

owner group other

S
Unix File Access Control List

« Each file has an owner and group

* Permissions set by owners
—{read, write, execute} x {owner, group, other}

* Only owners and root can change permissions
* Q: How can we run processes on behalf of someone else?

- E.g., password change retfunc@ubuntu$ Is -| /etc/passwd
(passwd) -rw-r--r-- 1 root root 2970 Oct 22 2023 /etc/passwd

r'wx rWX rWX
.

owner gro other

setuid if itis ‘s’

User ID

» Each process has three IDs in Unix

* Real user ID (RUID)

— Same as the user ID of the parent
— To determine which user started the process

« Effective user ID (EUID)

- From “Set User ID” bit on the file being executed or system calls
- To determine the permissions for the process

« Saved user ID (SUID)
— To restore previous EUID

User ID

» Each process has three IDs in Unix

* Real user ID (RUID)

— Same as the user ID of the parent
— To determine which user started the process

« Effective user ID (EUID)

- From “Set User ID” bit on the file being executed or system calls
- To determine the permissions for the process

retfunc@ubuntu$ Is -al /usr/bin/passwd
-rwsr-xr-x 1 root root 68208 Feb 6 2024 /usr/bin/passwd

« Saved user ID (SUID)
— To restore previous EUID

User ID

» Each process has three IDs in Unix

* Real user ID (RUID)

— Same as the user ID of the parent
— To determine which user st:

If you execute /usr/bin/passwd,

the EUID of the process is “root”
« Effective user ID (EUID)

- From “Set User |ID” bit on the file L
— To determine the permissions for

ccuted or system calls

It is possible to

-rwsr-xr-x 1 root root 68208 Feb 6 2024 /usr/bin/passwd

W write data from
_ Y

etfunc@ubuntu$ Is -l /etc/passwd
-rw-r--r-- 1 root root 2970 Oct 22 2023 /etc/passwd

-
Access Control Policy

How does one grant the right level of permission to an individual?

* Discretionary access control (DAC)
— All objects have owners
— What permission to grant others”? Owners can decide
- E.g., Unix, Windows, etc.

 Mandatory access control (MAC)
—What permission to grant others? Only the admin can decide

— Users cannot change policy themselves
- E.g., SELinux, military, etc.

Mandatory Access Contrgl (MACQ)

* The system assigns both subjects and objects special security
attributes

) g

~ . , oo\

E.g., top secret, unclassified (TOP SECBE'U i@\/“'@"%/

* Privileges cannot be changed by users but by system
administrators

* More restrictive and secure than discretionary access control

* Mostly used in security-critical systems (e.g., military)

Multilevel Security (MLS)*

* Most common form of mandatory access control

* Developed by the US Department of Defense

— All information (objects) possesses a classification
— All person (subject) posses a classification (or clearance)

* Access is allowed if the person’s class is higher than the
information' class

Security Classification .

« Two components: security level (sensitivity) and compartment
(category)

* Security level: a total ordered (small) set

— Access is allowed if the subject’s level is higher than the objects’ level
—-e.g., UNCLASSFIED < CONFIDENTIAL < SECRET < TOP SECRET

r ;‘Té‘zé}“ﬁf F. :‘:!

‘LEU

- Compartment: a set of categories :'“m-m]
N “QE

— Access allowed if subject’s compartments includes object’s { &%
compartments (“m peorr

o 6§
- E.g., {MILITARY, ECONOMY, ENVIRONMENT} u*“m ik ‘f;
CONFIDENTIAL)

ﬂﬁa

-
Classification Lattice

 The combination of security level and compartment forms a /attice
- E.qg., Security level = {TOP SECRET, SECRET},
Compartment = {Army, Nuclear}

« Lattice (SC, C): a partially ordered set that satisfies the followings
(SC = Security level + Compartment)

— Reflexivity: Vx € SC.x E x

- Transitivity: Vx,y,z € SCxEYyAyE z = xE z

- Anti-symmetry: Vx,y e SCXEyAYyEx = x=Yy
— Order: (§51,C1) = (S2,C2) & S1 <S2AC1 cC (2

-
Classification Lattice — Example

 The combination of security level and compartment forms a /attice
- E.qg., Security level = {TOP SECRET, SECRET},
Compartment = {Army, Nuclear}

— All possible set:
= Security level: TOP SECRET or SECRET
» Compartment: @, {Army}, {Nuclear}, {Army, Nuclear}

Classification Lattice — Example

 The combination of security level and compartment forms a /attice
- E.qg., Security level = {TOP SECRET, SECRET},
Compartment = {Army, Nuclear}

<Top Secret, {Army, Nuclear}>

<Top Secret, {Army}> <S Top Secret, {Nuclear}>

<Secret, {Army}> <Top Secret, 0> <Secret, {Nuclear}>

\ /

<Secret, @>

Classification Lattice — Example
File’s classification:

* The combination of security level and

~E.g., Security level = {TOP SECRET, SECH I URAASARNTIEEC] e
Compartment = {Army, Nuclear}

User’s classification:

<Top Secret, {Nuclear}>
<Secret, {Army}>

A denied
‘<Secret, {Army}> “Cras SEeHe

Classification Lattice — Example

- The combination of security level and [NASRR

~E.g., Security level = {TOP SECRET, SECH I URAASARNTIEEC] e
Compartment = {Army, Nuclear}

‘ <Top Secret, {Army, Nuclear}> == pORE L
P { y } Wﬂt ~
/ /4 CC@ e
S¢ a//o
M/eol

<Top Secret, {Nuclear}>

User’s classification:

<Top Secret, {Army, Nuclear}>

<Top Secret, {Nuclear}> = <Top Secret, {Army, Nuclear}>

Classification Lattice — Example

 The combination of security level and compartment forms a /attice
- E.qg., Security level = {TOP SECRET, SECRET},
Compartment = {Army, Nuclear}

‘ ,<Top Secret, {Army, Nuclear}>

'4 Cc
°Ss alp e

User’s classification:

<Top Secret, {Army, Nuclear}> File’s classification:

<Top Secret, @>
<Top Secret, @> = P O

<Top Secret, @ > C <Top Secret, {Army, Nuclear}>

The Bell-LaPadula Model (BLP)

* The first mathematical model of a multilevel secure system in 1973

* Main concern: prevent information leak (confidentiality)

— Ensures that information do not flow from higher security class to
lower/incomparable class

* |dea:
— Lower class subjects cannot read higher class objects (NO READ UP)
— Higher class subjects cannot write lower class objects (NO WRITE DOWN)

The BLP Model: Propertiis g

« Simple property (NO READ UP):
—a subject at a given security level may not read an object at a higher
security level

« *-property (NO WIRTE DOWN)

—a subject at a given security level may not write to any object at a
lower security level

TOP SECRET Read v / write TOP SECRET
Process

TOP SECRET Level

SECRET Level SECRET SECRET
File Process

The BLP Model: Propertiis g

« Simple property (NO READ UP):
—a subject at a given security level may not read an object at a higher
security level

« *-property (NO WIRTE DOWN)

—a subject at a given security level may not write to any object at a

lower security level By simple-property

TOP SECRET - TOP SECRET
Process

TOP SECRET Level

SECRET Level SECRET S SECRET

File By *-property Process

Pros and Cons of BLP

* Pros: confidentiality

 When is BLP useful?

- NO READ UP, NO WRITE DOWN = READ DOWN, WRITE UP
— Reporting system (e.g., government, military, school)

« Cons: integrity
— Attackers cannot read secret information, but what about write?
- E.g., fake announcement

The Biba Model

 Dual of BLP

* Main concern: prevent unauthorized change (integrity)
—from lower class to higher class

H

* |dea:
— Lower class subjects cannot write higher class objects (NO WRITE UP)
— Higher class subjects cannot read lower class objects (NO READ DOWN)

The Biba Model: Propertj‘gs g

» *-property (NO WRITE UP):

—a subject at a given security level may not write an object at a higher
security level

« Simple property (NO READ DOWN)

—a subject at a given security level may not read to any object at a
lower security level

TOP SECRET Read v / write TOP SECRET
Process

TOP SECRET Level

SECRET Level SECRET SECRET
File Process

The Biba Model: Propertj‘gs ;

- *-property (NO WRITE UP):

—a subject at a given security level may not write an object at a higher
security level

« Simple property (NO READ DOWN)

- a subject at a given security level may not read to any object at a
lower security level By *-property

TOP SECRET Read v / U TOP SECRET
Process

TOP SECRET Level

SECRET Level SECRET ; SECRET

File By simple-property Process

Pros and Cons of Biba .

* Pros: integrity

 When is BLP useful?

- NO WRITE UP, NO READ DOWN = WRITE DOWN, READ UP
— Notification system (i.e., important notice won’t be compromised)

« Cons: confidentiality

BLP vs. Biba

« BLP and Biba are mutually exclusive in the same classification

« But, confidentiality and integrity can coexist in the same system
— In their own independent classifications

-
Summary

» Access control: determine what users have permission to do

* Discretionary access control (DAC): owner’s discretionary
— ACL-based: more usable but the confused deputy problem can occur
— Capability-based: more secure but still Trojan can occur

« Mandatory Access Control (MAC): admin’s policy
— BLP (confidentiality) vs Biba (integrity)

* Which (combination of) models to choose? depending on the
systems and goals

	Slide 1
	Slide 2: Notification: Final Exam
	Slide 3: Operating System Security
	Slide 4: Principle of Least Privilege
	Slide 5: Access Control
	Slide 6: Question!
	Slide 7: Access Control Method: Reference Monitor
	Slide 8: Access Control Policy
	Slide 9: Access Control Policy
	Slide 10: Access Control Matrix
	Slide 11: Access Control Matrix
	Slide 12: Problem #1: Matrix Size
	Slide 13: Problem #2: Useless Space
	Slide 14: Solution
	Slide 15: Two Approaches for DAC
	Slide 16: Access Control List (ACL)
	Slide 17: ACL – Example
	Slide 18: ACL – Example
	Slide 19: ACL Limitation: Confused Deputy Problem
	Slide 20: ACL Limitation: Confused Deputy Problem
	Slide 21: Confused Deputy Problem: Real-World Example
	Slide 22: Confused Deputy Problem: Root Cause
	Slide 23: Simple Solution
	Slide 24: Two Approaches for DAC
	Slide 25: Capability
	Slide 26: Capability – Example
	Slide 27: Capability – Example
	Slide 28: ACL vs. Capabilities
	Slide 29: Trojan Horse
	Slide 30: Trojan Horse
	Slide 31: Trojan Horse
	Slide 32: Exploitation
	Slide 33: Lessons from DAC
	Slide 34: Real World Example: Unix
	Slide 35: Unix File Access Control List
	Slide 36: Unix File Access Control List
	Slide 37: User ID
	Slide 38: User ID
	Slide 39: User ID
	Slide 41: Access Control Policy
	Slide 42: Mandatory Access Control (MAC)
	Slide 43: Multilevel Security (MLS)
	Slide 44: Security Classification
	Slide 45: Classification Lattice
	Slide 46: Classification Lattice – Example
	Slide 47: Classification Lattice – Example
	Slide 48: Classification Lattice – Example
	Slide 49: Classification Lattice – Example
	Slide 50: Classification Lattice – Example
	Slide 51: The Bell-LaPadula Model (BLP)
	Slide 52: The BLP Model: Properties
	Slide 53: The BLP Model: Properties
	Slide 54: Pros and Cons of BLP
	Slide 55: The Biba Model
	Slide 56: The Biba Model: Properties
	Slide 57: The Biba Model: Properties
	Slide 58: Pros and Cons of Biba
	Slide 59: BLP vs. Biba
	Slide 60: Summary

