

CSE467: Computer Security

23. Authentication

Seongil Wi

Department of Computer Science and Engineering

Notification: Final Exam

- Date: 6/18 (Class time)
- Scope: All contents learned in this semester

Security Properties

- Confidentiality
- Integrity
- Availability

+ Authentication: the ability of a computer system to confirm the sender's identity

3

+ Non-repudiation: the ability of a computer system to *confirm* that the sender can not deny about something sent

Today's Topic

- Confidentiality
- Integrity
- Availability

+ Authentication: the ability of a computer system to confirm the sender's identity

+ Non-repudiation: the ability of a computer system to confirm that the sender can not deny about something sent

Authentication – Who Are You?

• The process by which the identity of someone or something

- Where it is used?
 - A person recognizing a person
 - Access control (PC, ATM, mobile phone)
 - Physical access control (house, building, area)
 - Identification (passport, driving license)

Authentication Methods

- Typical method
 - Knowledge: Something you know
 - Password, PIN, …

- Token: Something you have
 - ID card, key, passport, certificate

- **Biometrics**: Something you are
 - A physiological characteristic (e.g., fingerprint, iris pattern, form of hand)
 - A behavioral characteristic (e.g., the way you sign, the way you speak)

Outline

- Password-based authentication
- Token-based authentication
- Certificate-based authentication
- Biometric authentication
- Multi-factor authentication

Outline

Password-based authentication

- Token-based authentication
- Certificate-based authentication
- Biometric authentication
- Multi-factor authentication

Password-based Authentication – Something You Know

- User has a secret password
- System checks it to authenticate the user

Clear Text Password

Browser

Database

Problems of Clear Text Password?

SSL/TLS Encryption! Are We Safe Now?

Attackers

비밀번호 초기화

로그인

아이디찾기

••• PW

- What is the threat model?
 - -Online attacker
 - Tries to login to a service by iteratively trying passwords and looking whether he was successful

- Stole password database and tries to recover the passwords
 - ✓ If the password is stored in clear text, an offline attacker can know the password of every user

How Do Attackers Use Passwords?

- Once a database of credentials is leaked, attackers can use them in multiple ways
 - -Extract emails and usernames
 - -Learn what are the most common passwords that most users use
 - -Learn what are the passwords that specific users use

ID	Password
Ted	1234abcd
Bob	verysecure
Alice	1234abcd

Credential Stuffing

- Attackers try these credentials against other services
 - -Sometimes they utilize bots
 - -Attackers act like regular users trying to log in
 - -Attackers bet on users reusing their passwords

ID	Password
Ted	1234abcd
Bob	verysecure
Alice	1234abcd

Credential Stuffing is a Real and Growing Problem

Dunkin' Donuts accounts compromised in second credential stuffing attack in three months

Hacked Dunkin' Donuts accounts are now being sold on Dark Web forums.

By Catalin Cimpanu for Zero Day | February 12, 2019 -- 01:43 GMT (17:43 PST) | Topic: Security

The gaming community is a rising target for credential stuffing attacks

Hackers have targeted the gaming industry by carrying out 12 billion credential stuffing attacks against gaming websites within the 17-month period analyzed in the report (November 2017 – March 2019) by Akamai.

Retailers have become the top target for credential stuffing attacks

Bots are being used to complete rapid-fire fraudulent purchases with very little effort from the hackers behind them.

By Charlie Osborne for Zero Day | February 27, 2019 -- 11:00 GMT (03:00 PST) | Topic: Security

DailyMotion discloses credential stuffing attack

DailyMotion falls to credential stuffing attack two weeks after Reddit had the same fate.

By Catalin Cimpanu for Zero Day | January 27, 2019 -- 12:02 GMT (04:02 PST) | Topic: Security

RockYou Hack (2009)

- "Social gaming" company
- Database with 32 million user passwords from partner social networks
- Passwords stored in the clear
- December 2009: entire database hacked using an SQL injection attack and posted on the Internet

Passwords in RockYou Database

Password Popularity - Top 20

Rank	Password	Number of Users with Password (absolute)	Rank	Password	Number of Users with Password (absolute)
1	123456	290731	11	Nicole	17168
2	12345	79078	12	Daniel	16409
3	123456789	76790	13	babygirl	16094
4	Password	61958	14	monkey	15294
5	iloveyou	51622	15	Jessica	15162
б	princess	35231	16	Lovely	14950
7	rockyou	22588	17	michael	14898
8	1234567	21726	18	Ashley	14329
9	12345678	20553	19	654321	13984
10	abc123	17542	20	Qwerty	13856

Online Attacker

- How do we detect an online attacker?
 - Too many wrong tries
 - Distinctly different from a user who first was wrong but then was right
 - Tries multiple accounts instead of just one
- What can we do?
 - CATCHAs to differentiate between bots and humans
 - Temporarily block the IP address or rate-limit the number of requests
 - Temporarily lock the account that is being attacked
 - Rarely a good solution (Harms availability property)

Security Lockout

[[Fli도T 로그인

아이디착기

비밀번호 초기호

로그인

계정생성

••• PW

ID

Offline Attacker

- Attacker somehow obtains the list of our passwords
 - Break-in to server
 - Credential guessing, SQL injection, Remote-command execution

- It's obvious that the passwords should not be stored in the clear!
 - How do we not store them in the clear, and still check them against users attempting to log in?

Should We Use Encryption?

- How about <u>encrypting each password</u> with a <u>secret key</u> (e.g. only stored in the memory of the server) which is used to decrypt any single entry, on demand?
- Still a bad idea....
 - -The attacker can steal your key and decrypt everything
 - -The administrators can know users' passwords (no reason that they should)

Password Hashing

 Server consults database which contains Hash(pw) and validates user response

23

Password

ID

Recap - Property #1: Preimage Resistant ²⁵

• Given y, computationally infeasible to find x such that H(x) = y

- So-called one-way property

• Given x, computationally infeasible to find z such that $x \neq z$ and H(x) = H(z)

Insecure channel

• Given x, computationally infeasible to find z such that $x \neq z$ and H(x) = H(z)

• Given x, computationally infeasible to find z such that $x \neq z$ and H(x) = H(z)

Insecure channel

• Given x, computationally infeasible to find z such that $x \neq z$ and H(x) = H(z)

• Given x, computationally infeasible to find z such that $x \neq z$ and H(x) = H(z)

Sample Cryptographic Hash Functions

Name	Year of release	Digest size (output size)
MD5 (Media Digest 5)	1992	128-bit
SHA-1 (Secure Hash Alg orithm 1)	1995	160-bit
SHA-256 (Part of the SH A-2 family)	2001	256-bit

- MD5("helloworld") = d73b04b0e696b0945283defa3eee4538
- SHA-1("helloworld") = e7509a8c032f3bc2a8df1df476f8ef03436185fa
- SHA-256("helloworld") = 8cd07f3a5ff98f2a78cfc366c13fb123eb8d29c1ca37c79df190425d5b9e424d

Examples

- SHA1("mysecretpasswo") =
 27c2d31b648cf77730B2d1a06c8ee610c3f5b32c
- SHA1("mysecretpasswon") = 0c894b9cd0fef7d1ccfe0729d5ff7af9509731ed
- SHA1("mysecretpassword") = 08cd923367890009657eab812753379bdb321eeb-

Small changes in input

Large differences in output

(33

Problems of Password Hashing?

Recap: Salted Hash

Database

Recap: Salted Hash

Problems of Salted Hash?

- Our steps so far allow us the following guarantees:
 - User passwords should not be recoverable from a database
 - Identical/similar passwords will have different hashes
 - The database does not "leak" the length of a user's password

- Still has a problem of password guessing attack!
 - Offline attackers can still brute-force their way into users with weak passwords (if they are dedicated enough)

Password Guessing Techniques

- Dictionary with words spelled backwards
- First and last names, streets, cities
- Same with upper-case initials
- Room numbers, telephone numbers, etc.
- Letter substitutions and other tricks

If you can think of it, attacker will, too!

Password Hash Cracking

- Custom GPU-based hardware
 - GPUs are great for playing games and hashing
 - Most recent number for Nvidia RTX 4090
 - 300 Gigahashes per second for Windows NTLM hashes

- Cloud-based cracking tools
 - Crackq
 - Password-cracking as a service

Home > News > Nvidia RTX 4090

8 RTX 4090s could crack most of your passwords in just 48 minutes

By Dave James published October 18, 2022

A modest cracking rig would be able to go through every single possible password combination of an eight-character password in less than an hour.

Defense: Password Requirements

- Systems can enforce password requirements when users register/change their passwords
 - Not a dictionary word
 - Must be at least X characters long
 - Must contain special characters
 - Is not part of a recently compromised database

Create a Y	Sign up ahoo email add	ress	
First name	Last na	Last name	
Email address	@yahoo	o.com	
I want to use my current 123456	email address		
Your password isn't stro	ong enough, try ma	iking it longer.	
+1 T Mobile	phone numbe	۶r	
Birth Month	▼ Day	Year	

- Other requirements are popular but not actually good
 - Change password every N months
 - NIST (National Institute of Standards and Technology) does not recommend forced password changes when passwords are not compromised

Limitations of Password Requirements (1)⁴²

- Overly restrictive password policies...
 - 7 or 8 characters, at least 3 out of {digits, upper-case, lower-case, nonalphanumeric}, no dictionary words, change every 4 months, password may not be similar to previous 12 passwords...
- ... result in frustrated users and less security
 - -Burdens of devising, learning, forgetting passwords
 - Users construct passwords insecurely, write them down

- Heavy password re-use across systems
 - Do you use the same password for UNIST Portal and Google?

Limitations of Password Requirements (2)⁴³

- Typically, **strength** of a password and **memorability** are working against each other (Trade off)
 - People can't remember arbitrary 13-character sequences
 - You can likely remember "jack123" better than "399% (mJjaweee"

Password-based authentication

- Token-based authentication
- Certificate-based authentication
- Biometric authentication
- Multi-factor authentication

- Password-based authentication
- Token-based authentication
- Certificate-based authentication
- Biometric authentication
- Multi-factor authentication

Authentication Token – Something You Have

- Things one can have
 - Access to your smartphone
 - A bank card
 - A secret token
 - Hardware: OTP tokens
 - Software: JWT, OAuth
 - A encryption/decryption keys
 - A badge
- Problems:
 - Stolen / forgotten / lost / duplicated
 - Higher cost to change than passwords
 - Cost of user education and support

Authentication Token – Something You Have

- Types
 - -Challenge-response authentication
 - -Time-based authentication

• Key idea: avoid sending password-related information

• Key idea: avoid sending password-related information

- Key idea: avoid sending password-related information
- Why is this better than the password over a network?
 –Secrecy: difficult to recover secret from response
 - Cryptographic hashing or symmetric encryption work well
 - -Freshness: if the challenge is fresh, attacker on the network cannot replay an old response

50

Fresh random number, counter, timestamp, …

• Use case: symmetric key encryption

 A method by which the prover can prove to verifier that they know a secret, without revealing anything about the secret

 A method by which the prover can prove to verifier that they know a secret, without revealing anything about the secret

 A method by which the prover can prove to verifier that they know a secret, without revealing anything about the secret

 A method by which the prover can prove to verifier that they know a secret, without revealing anything about the secret

 A method by which the prover can prove to verifier that they know a secret, without revealing anything about the secret

 A method by which the prover can prove to verifier that they know a secret, without revealing anything about the secret

 A method by which the prover can prove to verifier that they know a secret, without revealing anything about the secret

 A method by which the prover can prove to verifier that they know a secret, without revealing anything about the secret

 A method by which the prover can prove to verifier that they know a secret, without revealing anything about the secret

If the *Prover* **repeatedly appears** at the exit where the *Verifier* shouts, the *Verifier* can conclude that the *Prover* knows the secret

- Chance of lucky guess
 - 1st trial: 1:2
 - 2nd trial: 1:4
 - 3rd trial: 1:8
 - -4th trial: 1:16
 - 5th trial: 1:32
 - . . .
 - 100th trial: 1:7.89 x 10⁻³¹

Zero-Knowledge Proof – Use Case

Fiat-Shamir Interactive Identification

62

ZERO-KNOWLEDGE PROOF

Time-based Authentication

 Client and server use [shared seed (secret key) + current time] to generate a passcode

Time-based Authentication

- Client and server use [shared seed (secret key) + current time] to generate a passcode
- Various methods are available for users to receive time-based one-time passwords
 - Hardware security tokens that display the password on a small screen;
 - Mobile authenticator apps, such as Google Authenticator;

- Resynchronization options
 - Default time step of 30 seconds
 - Allow for client-clocks being slightly slower / slightly faster

- Password-based authentication
- Token-based authentication
- Certificate-based authentication
- Biometric authentication
- Multi-factor authentication

- Password-based authentication
- Token-based authentication
- Certificate-based authentication
- Biometric authentication
- Multi-factor authentication

- Password-based authentication
- Token-based authentication
- Certificate-based authentication
- Biometric authentication
- Multi-factor authentication

- Password-based authentication
- Token-based authentication
- Certificate-based authentication
- Biometric authentication
- Multi-factor authentication

Biometrics Authentication – Something You Are

- Biometrics = Bio + metric
- The measurement and statistical analysis of biological dat
 - Fingerprints
 - Palms
 - -Face
 - Iris/Retina scanning
 - -Voice
 - How you walk? How you type? ..
 - Research in continuous authentication

Biometrics: Pros and Cons

- Pros
 - Nothing to remember
 - Passive (nothing to type, always carrying them around)
 - Can't share
 - Can be fairly unique
- Cons
 - Revocability
 - You can change a password but how do you change your fingerprint?
 - Are still spoofable
 - E.g., Pick fingerprints from objects and create molds
 - -Cost
 - Need special devices to read them
 - Error rates (Major difference with something you know/have)
 - Probability of you being you, rather than certainty

Biometric Error Rates

- False acceptance rate: system accepts a forgery
- False rejection rate: system rejects valid user

Biometric Error Rates

- False acceptance rate: system accepts a forgery
- False rejection rate: system rejects valid user

Outline

- Password-based authentication
- Token-based authentication
- Certificate-based authentication
- Biometric authentication
- Multi-factor authentication

Outline

- Password-based authentication
- Token-based authentication
- Certificate-based authentication
- Biometric authentication
- Multi-factor authentication

Multi-factor Authentication (MFA)

- A combination of criteria that need to be met
 - To strengthen the overall security of a system

 E.g., 2 factor authentication: password (what you know) + phone (what you have)

Lessons: User-aspects

78

- Never forget that users are a critical part of securing an infrastructure
 - No matter how good your technology is, users can still ruin everything if someone convinces them that it is "okay"
- Abusing the trust of users: **social engineering or phishing**
 - We will never ask you for your password over email!
- Prevention:
 - Educating your employees
 - Setting up standard procedures

Conclusion

- Password-based authentication
- Token-based authentication
- Certificate-based authentication
- Biometric authentication
- Multi-factor authentication