TTTTTTTTTTTTTTTTTTTTTT
nnnnnnnnnnnnnnnnnnnn

CSE467: Computer Security

24. Program Analysis Overview

Seongil Wi

Department of Computer Science and Engineering

HW3 Due ;

.3
» Today (~11:59 pm)

The BLP Model Question* g

» Simple property (NO READ UP):

—a subject at a_given sc aval mav nat read an ahic
SRR Question from your colleagues:

o *-property (NCRA ARV ERe (o) p
- a subject at SEadilNJEA I RGTCHEELE]S of confidential information
MUCIEERI {0 entities with lower security classifications

TOP SECRET Read v / write v SECRET
TOP SECRET Level File Process

SECRET Level

File Process

The Biba Model: PropertLes z

e *_Nnroner \I() /I

Question from your colleagues: bject at a higher
Why no read down?

— To uphold integrity, data from untrusted sources is

not read y object at a

.vv- - ' v -v-

TOP SECRET | / write v/ TOP SECRET
TOP SECRET Level File ‘ SrarEEe

SECRET Level

File Process

Impact of Poor Software*QuaIity

The Patriot Missile (1991) The Ariane-5 Rocket (1996) NASA’s Mars Climate Orbiter (1999)
Floating-point roundoff Integer Overflow Meters-Inches Miscalculation
28 soldiers died $100M $125M
This dangerous Android security bug could E————) Homeland Security warns that certain heart
The 'Heartbleedl Security ﬂaW that ,Iif"é.r\yone hack“yg:n phone camera What Boeing's 737 MAX HastoDoWlthCars:Soﬂwa”r'e devices can be hacked
affects most of the Internet N i S il o - - ‘
an.m‘mtxu‘w» cr‘m B o O i 4 g % . New in Life & Style

W

£ V-2 6 ways 1o celebrate Valentine's
| Day in Lake Geneva

Discovering Software Bugs ;

* Very important as software is eating the world!
« Key issue: how to detect software errors as early as possible?

Attention
to
Quality

Shift Left Traditional

Quality

Model Model

COST OF A SOFTWARE BUG 8 Dosign iy fest & ook & Aiae

If found in Gathering
Requirements phase

If found in QA testing phase If found in Production

- IBM Systems Sciences Institute, 2015

Software Bugs g

.3
* What?
— Software runs and produces outputs unexpectedly

* Why?

— Incorrectly written code by human or Al

Al Can Write Code Like Humans—Bugs and All

New tools that help developers write software also generate similar mistakes.

Program critical error

The instuction at 0x0000000025C2E42B referenced
memory at 0x000000034D02F4. The memory could

It works....... why? not be read.
Click on OK to terminate the program
© Click on CANCEL to debug the program

OK Cancel

Build a System that Findi Bugs g

e
Program

a.k.a., analyzer, fuzzer, etc. Bugs

Build a System that Findi Bugs

- -

a.k.a., analyzer, fuzzer, etc. Bugs

Prog ram

How precise can we make our system?

Precision Matters

Can our system
Has 1 bug

Given an arbitrary program, can we build a system
that decides whether the program is buggy or not?

-
Building a Perfect Analyier iIs Impossible

* |t only shows the presence of bugs, never their absence!

« But, we can try to find as many bugs as possible.

* For example,

— Bounded model checking
— Software testing
- Etc.

Soundness vs. CompleteQess

* If an analyzer is sound.

Truth

Soundness vs. CompleteQess ;

* [f an analyzer is complete:

What | say

Soundness vs. CompleteQess

* If an analyzer is sound and complete (=perfect).

Truth

Soundness vs. CompleteQess %

* If an analyzer is sound and complete (=perfect).

True Positive and False Pi)sitive

Truth >

S
True Positive and False Positive

Positive: The analyzer says
“these are bugs”

Truth

True Positive and False Positive g

4 AN

Positive: The analyzer says
“these are bugs”

What | say

FP

(False

Positivej

Detected something that is ldentifying real
not actually vulnerabilities] vulnerabilities correctly

True Positive and False Positive ;

Positive: The analyzer says
“these are bugs”

What | say

FP

(False

Positivej

FEPCHE - L2007 "HAO' 2F

Detected something that is
not actually vulnerabilities |piskws

[OL0l7224 23| E 7|AH] Wil T2 O3 "gofo| Y Z2HUS UMY = HR QM5 § LRI LGSR AL =0] 25

False Negatives and True*Negatives

Positive: The analyzer says
“these are bugs”

NEGaENE: The analyzer says

“these are NOT bugs”

What | say

FP

(False

Positivej

Truth

False Negatives and True*Negatives

What | say TN

FP

(False

Positivej

Positive: The analyzer says
“these are bugs”

NEGaENE: The analyzer says

“these are NOT bugs”

Missing genuine Correctly identifying the

vulnerabilities absence of the vulnerabillities

Precision

3
* Precision
=TP /(TP + FP)
What | say TN
(True
Negative)
FP
(False Truth
Positive)
FN
(False
Negative)

Precision ;

¥

* Precision
=TP /(TP + FP)

What | say

FP

(False
Positive)

.
Limitations of Precision Measurement

* If an analyzer is sound.

Precision?
=100%

Truth

What | say

Limitations of Precision Measurement g

* If an analyzer is sound.

Precision?
=100%

Too many false
negatives

—

What | say

Limitations of Precision Measurement

* If an analyzer is sound.

Precision?

Too many false =100%

negatives

—

What | say

When measuring the performance of an analyzer,
the ratio of FN and TP must also be considered!

Recall

* Precision
=TP /(TP + FP)

 Recall
=TP/(FN + TP)

Truth

FN

(False
Negative)

Accuracy

.3
* Precision
= TP /(TP + FP)
What | say TN
(Tru.e Recall
FP Negative) =TP / (FN + TP)
(False Truth
Positive) « Accuracy
(faEe = (TP+TN)/
Negative) (TP +FP +FN +TN)

False Positive Rate vs. Faal‘ese Negative Rat;

- FP Rate
= FP /(TP + FP)

What | say TN
\ e(T;l:_ee) * FN Rate
o=) =FN/(FN + TN)
(False Truth
Positive)
FN

(False
Negative)

Three Forms of Testing .

 Manual testing
— A human test the code

 Static analysis
— Analyze the program without executing it

 Dynamic analysis
— Analyze the program during an execution

-
Manual Testing

* “Debug by printf”

Read documentation and understand functionality

Get familiar with the code structure and components
Draft test cases that cover requirements from document
Review and discuss test cases

Execute the test cases

Report buts

After bugs are fixed, execute test cases again!

NS Ok -

Manual Testing .

* Pros
— Simple to setup for running target programs
— Gives good feedback if test cases are carefully designed

« Cons
— Requires manual effort to create each test
— Tests must be kept up to date as specification evolves

Three Forms of Testing .

 Manual testing
— A human test the code

 Static analysis
— Analyze the program without executing it

 Dynamic analysis
— Analyze the program during an execution

Static Analysis

* Analyze the program without executing it to detect potential
security bugs

» Abstract (over-approximate) across all possible executions

« Keywords: (static) taint analysis, (static) symbolic execution,
abstract interpretation, abstract syntax tree, control flow graph,
data flow graph

Example: Abstract Synta);(‘e Tree (AST)

« Syntax information: models a
hierarchical decomposition of

each statement
d -F int = PRED
void oo() { NG |
int x = source(); x| Cearr) <
if (x < MAX) {] o
int y = 2 * X, source X MAX

int = sink (ARG)
N |
Y * Y
N
2 X

Example: Abstract Synta);(‘e Tree (AST)

« Syntax information: models a
hierarchical decomposition of

each statement
Declaration ‘
\
statement &atemem
S
void foo() { = N —
int x = source(); « | Cearr) <’
it (x < MAX) { 1 N
int Y = 2 * X, source X MAX int = sink (ARG)
sink(y); N /
} y * y
} N
2 X

Example: Control Flow G;aph (CFG)

o _ , (ENTRY)
« Semantic information: a program’s
control flow among statement v

int x = source()

e

if (x < MAX)

void foo() { lme
int x = source(); int y = 2 * x
if (x < MAX) { lg false
inty = 2 * x;
51nk(y), sink(y)
} le
-

Example: Control Flow G;aph (CFG)

« Semantic information: a program’s
control flow among statement

(ENTRY)

E

A4

int x = source()

e

if (x < MAX)

void foo() A
int x = source();
if (X < MAX) {
true int y = e
sink(y);

} P false

ltrue

int y = 2 * x

l € false

sink(y)

E

Example: Data Flow Gra&h (DFG)

« Semantic information: a

program’s data flow among int x = source() ‘
statement /"\
/Dx Dx\
void foo() { if (x < MAX) | inty =2 * x
int x = source();
if (x < MAX) { //////

Example: Data Flow Gra&h (DFQG)

« Semantic information: a

program’s data flow among int x = source() ‘
statement /"\
/Dx Dx\
void foo() { if (x < MAX) | inty =2 * x

inty =2 * x3

Example: Data Flow Gra&h (DFG)

« Semantic information: a

program’s data flow among int x = source() ‘
statement /"\
/Dx Dx\
void foo() { if (x < MAX) | inty =2 * x

int x = source();
if (x < MAX) { //////
y); /

}

Static Analysis

* Pros
— Save time and resources (we do not need to execute the program)
— A highly scalable method (it can run on multiple code bases)

— Aiming for completeness
» Has a global view of the program

e Cons

— Requires manual configuration of rules or standards
» E.g., graph traversal rules for each vulnerability type

— May have large amounts of false positives

False Positives ;

¥

« May have spurious alarms because of over-approximation
— Can be improved by more advanced design

Dynamically resolved code:

if x includes exploit:
sanitize(x

void foo() A
int X = sourcasr,
it (unknown(x)) {
inty = 2 * x;
sink(y);

False Positives g

¥

« May have spurious alarms because of over-approximation
— Can be improved by more advanced design

Dynamically resolved code:

if x 1ncludes exploit:

void foo() { sanitize(x

The analyzer has no knowledge of
the runtime information

} = Just check the data flow

The analyzer will say that
“this is a potential bug”

Three Forms of Testing .

 Manual testing
— A human test the code

 Static analysis
— Analyze the program without executing it

 Dynamic analysis
— Analyze the program during an execution

Dynamic Analysis .

* Analyze the program during an execution with the concrete
iInput
— Focuses on a single concrete run

« Keywords: fuzzing, penetration testing, scanner, concolic

execution, dynamic taint analysis
Bug Found &

Test cases Program
(inputs) Under Test
(PUT)

Example: Fuzzing

* |nitially, developed by Barton Miller in 1990

_el—

Program
Under Test

Test cases
(inputs)

Bug

Example: Fuzzing .

* |nitially, developed by Barton Miller in 1990

Program
Under Test

Test cases
(inputs)

Fuzzing is ...
9 *

« Simple, and popular way to find security bugs
* Used by security practitioners

* Research questions:
— Why fuzzing works so well in practice?
— Are we maximizing the ability of fuzzing?

Dynamic Analysis .
* Pros

— False positives are rare
= Because it considers dynamically resolved information

e Cons
— Not scalable

— Testing is incomplete = produces many false negatives
» The limited focus on a given (generated/mutated) inputs

Conclusion N

» Software testing finds bugs before an attacker can exploit them!
 Building a perfect analyzer is impossible
* Manual testing

 Static analysis
* Dynamic analysis

	Slide 1
	Slide 2: HW3 Due
	Slide 3: The BLP Model Question
	Slide 4: The Biba Model: Properties
	Slide 5: Impact of Poor Software Quality
	Slide 7: Discovering Software Bugs
	Slide 8: Software Bugs
	Slide 9: Build a System that Finds Bugs
	Slide 10: Build a System that Finds Bugs
	Slide 11: Precision Matters
	Slide 12: Building a Perfect Analyzer is Impossible
	Slide 13: Soundness vs. Completeness
	Slide 14: Soundness vs. Completeness
	Slide 15: Soundness vs. Completeness
	Slide 16: Soundness vs. Completeness
	Slide 17: True Positive and False Positive
	Slide 18: True Positive and False Positive
	Slide 19: True Positive and False Positive
	Slide 20: True Positive and False Positive
	Slide 21: False Negatives and True Negatives
	Slide 22: False Negatives and True Negatives
	Slide 23: Precision
	Slide 24: Precision
	Slide 25: Limitations of Precision Measurement
	Slide 26: Limitations of Precision Measurement
	Slide 27: Limitations of Precision Measurement
	Slide 28: Recall
	Slide 29: Accuracy
	Slide 30: False Positive Rate vs. False Negative Rate
	Slide 31: Three Forms of Testing
	Slide 32: Manual Testing
	Slide 33: Manual Testing
	Slide 34: Three Forms of Testing
	Slide 35: Static Analysis
	Slide 36: Example: Abstract Syntax Tree (AST)
	Slide 37: Example: Abstract Syntax Tree (AST)
	Slide 38: Example: Control Flow Graph (CFG)
	Slide 39: Example: Control Flow Graph (CFG)
	Slide 40: Example: Data Flow Graph (DFG)
	Slide 41: Example: Data Flow Graph (DFG)
	Slide 42: Example: Data Flow Graph (DFG)
	Slide 43: Static Analysis
	Slide 44: False Positives
	Slide 45: False Positives
	Slide 46: Three Forms of Testing
	Slide 47: Dynamic Analysis
	Slide 48: Example: Fuzzing
	Slide 49: Example: Fuzzing
	Slide 50: Fuzzing is …
	Slide 51: Dynamic Analysis
	Slide 52: Conclusion

