
24. Program Analysis Overview

Seongil Wi

Department of Computer Science and Engineering

CSE467: Computer Security

HW3 Due

• Today (~11:59 pm)

2

The BLP Model Question

• Simple property (NO READ UP):
− a subject at a given security level may not read an object at a higher

security level

• *-property (NO WIRTE DOWN)
− a subject at a given security level may not write to any object at a

lower security level

3

TOP SECRET Level

SECRET Level

TOP SECRET

File

SECRET

File

TOP SECRET

Process

SECRET

Process

Read ✓ / write ✓

Read✓ / write✓

Question from your colleagues:

Why no write down?

→ To prevent the leakage of confidential information

to entities with lower security classifications

The Biba Model: Properties

• *-property (NO WRITE UP):
− a subject at a given security level may not write an object at a higher

security level

• Simple property (NO READ DOWN)
− a subject at a given security level may not read to any object at a

lower security level

4

TOP SECRET Level

SECRET Level

TOP SECRET

File

SECRET

File

TOP SECRET

Process

SECRET

Process

Read ✓ / write ✓

Read✓ / write✓

Question from your colleagues:

Why no read down?

→ To uphold integrity, data from untrusted sources is

not read

Impact of Poor Software Quality 5

Discovering Software Bugs

• Very important as software is eating the world!

• Key issue: how to detect software errors as early as possible?

7

Software Bugs

• What?
− Software runs and produces outputs unexpectedly

• Why?
− Incorrectly written code by human or AI

8

Build a System that Finds Bugs 9

System

Program Bugs
a.k.a., analyzer, fuzzer, etc.

Build a System that Finds Bugs 10

System

Program Bugs
a.k.a., analyzer, fuzzer, etc.

How precise can we make our system?

Precision Matters 11

System

Program Bugs
a.k.a., analyzer, fuzzer, etc.

Given an arbitrary program, can we build a system

that decides whether the program is buggy or not?

Has 1 bug
Can our system

find it?

Building a Perfect Analyzer is Impossible

• It only shows the presence of bugs, never their absence!

• But, we can try to find as many bugs as possible.

• For example,
− Bounded model checking

− Software testing

− Etc.

12

Soundness vs. Completeness

• If an analyzer is sound:

13

Truth

What I say

Soundness vs. Completeness

• If an analyzer is complete:

14

What I say

Truth

Soundness vs. Completeness

• If an analyzer is sound and complete (=perfect):

15

What I say =

Truth

Soundness vs. Completeness

• If an analyzer is sound and complete (=perfect):

16

What I say =

Truth

True Positive and False Positive 17

What I say

Truth

True Positive and False Positive 18

What I say

Truth

Positive: The analyzer says

 “these are bugs”

True Positive and False Positive 19

What I say

Truth

TP
(True

Positive)

Identifying real

vulnerabilities correctly

FP
(False

Positive)

Detected something that is

not actually vulnerabilities

Positive: The analyzer says

 “these are bugs”

True Positive and False Positive 20

What I say

Truth

TP
(True

Positive)

Identifying real

vulnerabilities correctly

FP
(False

Positive)

Detected something that is

not actually vulnerabilities

Positive: The analyzer says

 “these are bugs”

Truth

False Negatives and True Negatives 21

What I say

TP
(True

Positive)

FP
(False

Positive)

Negative: The analyzer says

“these are NOT bugs”

Positive: The analyzer says

 “these are bugs”

Truth

False Negatives and True Negatives 22

What I say

TP
(True

Positive)

FP
(False

Positive)

Negative: The analyzer says

“these are NOT bugs”

Positive: The analyzer says

 “these are bugs”

FN
(False

Negative)

TN
(True

Negative)

Missing genuine

vulnerabilities

Correctly identifying the

absence of the vulnerabilities

Precision 23

What I say

Truth

FP
(False

Positive)

FN
(False

Negative)

TN
(True

Negative)

TP
(True

Positive)

• Precision
= TP / (TP + FP)

Precision 24

Truth

FN
(False

Negative)

TN
(True

Negative)

• Precision
= TP / (TP + FP)

What I say

FP
(False

Positive)
TP
(True

Positive)

Limitations of Precision Measurement

• If an analyzer is sound:

25

Truth

What I say

Precision?

⇒100%

Limitations of Precision Measurement

• If an analyzer is sound:

26

Truth

What I say

Precision?

⇒100%
Too many false

negatives

Limitations of Precision Measurement

• If an analyzer is sound:

27

Truth

What I say

Precision?

⇒100%
Too many false

negatives

When measuring the performance of an analyzer,

the ratio of FN and TP must also be considered!

Recall

• Precision
= TP / (TP + FP)

• Recall
= TP / (FN + TP)

28

What I say

FP
(False

Positive)

TN
(True

Negative)

Truth

FN
(False

Negative)

TP
(True

Positive)

Accuracy

• Precision
= TP / (TP + FP)

• Recall
= TP / (FN + TP)

• Accuracy
= (TP+TN)/
(TP + FP + FN + TN)

29

What I say

Truth

TP
(True

Positive)

FP
(False

Positive)

FN
(False

Negative)

TN
(True

Negative)

False Positive Rate vs. False Negative Rate

• FP Rate
= FP / (TP + FP)

• FN Rate
= FN / (FN + TN)

30

What I say

Truth

TP
(True

Positive)

FP
(False

Positive)

FN
(False

Negative)

TN
(True

Negative)

Three Forms of Testing

• Manual testing
− A human test the code

• Static analysis
− Analyze the program without executing it

• Dynamic analysis
− Analyze the program during an execution

31

Manual Testing

• “Debug by printf”

1. Read documentation and understand functionality

2. Get familiar with the code structure and components

3. Draft test cases that cover requirements from document

4. Review and discuss test cases

5. Execute the test cases

6. Report buts

7. After bugs are fixed, execute test cases again!

32

Manual Testing

• Pros
− Simple to setup for running target programs

− Gives good feedback if test cases are carefully designed

• Cons
− Requires manual effort to create each test

− Tests must be kept up to date as specification evolves

33

Three Forms of Testing

• Manual testing
− A human test the code

• Static analysis
− Analyze the program without executing it

• Dynamic analysis
− Analyze the program during an execution

34

Static Analysis

• Analyze the program without executing it to detect potential
security bugs

• Abstract (over-approximate) across all possible executions

• Keywords: (static) taint analysis, (static) symbolic execution,
abstract interpretation, abstract syntax tree, control flow graph,
data flow graph

35

Example: Abstract Syntax Tree (AST)

• Syntax information: models a
hierarchical decomposition of
each statement

36

void foo() {
 int x = source();
 if (x < MAX) {
 int y = 2 * x;
 sink(y);
 }
}

Example: Abstract Syntax Tree (AST)

• Syntax information: models a
hierarchical decomposition of
each statement

37

void foo() {
int x = source();
if (x < MAX) {

int y = 2 * x;
sink(y);

}
}

Declaration

statement

Example: Control Flow Graph (CFG)

• Semantic information: a program’s
control flow among statement

38

void foo() {
 int x = source();
 if (x < MAX) {
 int y = 2 * x;
 sink(y);
 }
}

Example: Control Flow Graph (CFG)

• Semantic information: a program’s
control flow among statement

39

void foo() {
 int x = source();
 if (x < MAX) {
 int y = 2 * x;
 sink(y);
 }
}

true

false

Example: Data Flow Graph (DFG)

• Semantic information: a
program’s data flow among
statement

40

void foo() {
 int x = source();
 if (x < MAX) {
 int y = 2 * x;
 sink(y);
 }
}

Example: Data Flow Graph (DFG)

• Semantic information: a
program’s data flow among
statement

41

void foo() {
 int x = source();
 if (x < MAX) {
 int y = 2 * x;
 sink(y);
 }
}

Example: Data Flow Graph (DFG)

• Semantic information: a
program’s data flow among
statement

42

void foo() {
 int x = source();
 if (x < MAX) {

int y = 2 * x;
 sink(y);
 }
}

Static Analysis

• Pros
− Save time and resources (we do not need to execute the program)

− A highly scalable method (it can run on multiple code bases)

− Aiming for completeness
▪ Has a global view of the program

• Cons
− Requires manual configuration of rules or standards

▪ E.g., graph traversal rules for each vulnerability type

− May have large amounts of false positives

43

False Positives 44

void foo() {
 int x = source();
 if (unknown(x)) {
 int y = 2 * x;
 sink(y);
 }
}

• May have spurious alarms because of over-approximation
− Can be improved by more advanced design

Dynamically resolved code:

if x includes exploit:
 sanitize(x)

False Positives 45

void foo() {
 int x = source();
 if (unknown(x)) {
 int y = 2 * x;
 sink(y);
 }
}

• May have spurious alarms because of over-approximation
− Can be improved by more advanced design

The analyzer has no knowledge of

the runtime information

⇒ Just check the data flow

The analyzer will say that

“this is a potential bug”

Dynamically resolved code:

if x includes exploit:
 sanitize(x)

Three Forms of Testing

• Manual testing
− A human test the code

• Static analysis
− Analyze the program without executing it

• Dynamic analysis
− Analyze the program during an execution

46

Dynamic Analysis

• Analyze the program during an execution with the concrete
input

− Focuses on a single concrete run

• Keywords: fuzzing, penetration testing, scanner, concolic
execution, dynamic taint analysis

47

Program

Under Test

(PUT)

Test cases

(inputs)

Bug Found

Benign

Example: Fuzzing

• Initially, developed by Barton Miller in 1990

48

Test cases

(inputs)

Program

Under Test

Exec.

Fuzz

ok

crash

Bug

Example: Fuzzing

• Initially, developed by Barton Miller in 1990

49

Test cases

(inputs)

Program

Under Test

Exec.

Fuzz

ok

crash

Bug
Random

char stream

Fuzzing is …

• Simple, and popular way to find security bugs

• Used by security practitioners

• Research questions:
− Why fuzzing works so well in practice?

− Are we maximizing the ability of fuzzing?

50

Dynamic Analysis

• Pros
− False positives are rare

▪ Because it considers dynamically resolved information

• Cons
− Not scalable

− Testing is incomplete ⇒ produces many false negatives
▪ The limited focus on a given (generated/mutated) inputs

51

Conclusion

• Software testing finds bugs before an attacker can exploit them!

• Building a perfect analyzer is impossible

• Manual testing

• Static analysis

• Dynamic analysis

52

	Slide 1
	Slide 2: HW3 Due
	Slide 3: The BLP Model Question
	Slide 4: The Biba Model: Properties
	Slide 5: Impact of Poor Software Quality
	Slide 7: Discovering Software Bugs
	Slide 8: Software Bugs
	Slide 9: Build a System that Finds Bugs
	Slide 10: Build a System that Finds Bugs
	Slide 11: Precision Matters
	Slide 12: Building a Perfect Analyzer is Impossible
	Slide 13: Soundness vs. Completeness
	Slide 14: Soundness vs. Completeness
	Slide 15: Soundness vs. Completeness
	Slide 16: Soundness vs. Completeness
	Slide 17: True Positive and False Positive
	Slide 18: True Positive and False Positive
	Slide 19: True Positive and False Positive
	Slide 20: True Positive and False Positive
	Slide 21: False Negatives and True Negatives
	Slide 22: False Negatives and True Negatives
	Slide 23: Precision
	Slide 24: Precision
	Slide 25: Limitations of Precision Measurement
	Slide 26: Limitations of Precision Measurement
	Slide 27: Limitations of Precision Measurement
	Slide 28: Recall
	Slide 29: Accuracy
	Slide 30: False Positive Rate vs. False Negative Rate
	Slide 31: Three Forms of Testing
	Slide 32: Manual Testing
	Slide 33: Manual Testing
	Slide 34: Three Forms of Testing
	Slide 35: Static Analysis
	Slide 36: Example: Abstract Syntax Tree (AST)
	Slide 37: Example: Abstract Syntax Tree (AST)
	Slide 38: Example: Control Flow Graph (CFG)
	Slide 39: Example: Control Flow Graph (CFG)
	Slide 40: Example: Data Flow Graph (DFG)
	Slide 41: Example: Data Flow Graph (DFG)
	Slide 42: Example: Data Flow Graph (DFG)
	Slide 43: Static Analysis
	Slide 44: False Positives
	Slide 45: False Positives
	Slide 46: Three Forms of Testing
	Slide 47: Dynamic Analysis
	Slide 48: Example: Fuzzing
	Slide 49: Example: Fuzzing
	Slide 50: Fuzzing is …
	Slide 51: Dynamic Analysis
	Slide 52: Conclusion

