

CSE467: Computer Security

5. Symmetric-key Encryption (2)

Seongil Wi

Department of Computer Science and Engineering

Recap: Symmetric-key Encryption

• Symmetric: the encryption and decryption keys are the same

Recap: Block Cipher

Recap: Two Classes of Block Ciphers

Feistel ciphers

Substitution-permutation (SP)
ciphers

Practical Use of Block Cipher

Practical Use of Block Cipher

Problems for the Example

• Identical plaintext blocks \rightarrow identical ciphertext blocks

How to generate different ciphertexts for the same plaintext?

Modes of Operation

Block Cipher Modes of Operation

- Determine how to repeatedly apply a single-block operation to a sequence of blocks
- Different modes of operations
 - ECB: Electronic Code Book (The naïve one we've just discussed)
 - CBC: Cipher Block Chaining
 - CFB: Cipher FeedBack
 - OFB: Output FeedBack
 - -CTR: CounTeR mode

Shell Command

\$ openssl enc -aes-128-cfb -e -in plain.bin -out cipher.bin -K

Block cipher mode

ECB: Electronic Code Book

ECB: Electronic Code Book

• Each block is encoded independently of the other blocks

- Advantages
 - Simple and efficient (i.e., parallelizable) to compute
 - The error does not have any effects on the other blocks

D

 P_1

 P_N F E C_N

13

D

 P_2

ECB: Electronic Code Book

· Each block is encoded independently of the other blocks

- Advantages
 - Simple and efficient (i.e., parallelizable) to compute
 - The error does not have any effects on the other blocks
- Disadvantages
 - Same plaintext always corresponds to same ciphertext

CBC: Cipher Block Chaining

CBC: Cipher Block Chaining

 Each previous cipher block is chained with current plaintext block

- Advantages
 - Does not reveal any patterns the plaintext may have
- Disadvantages
 - Cannot parallelize encryption
 - An error affects one other block (Toggles only one bit in the next block)

CBC: Cipher Block Chaining

 Each previous cipher block is chained with current plaintext block

- Advantages
 - Does not reveal any patterns the plaintext may have
- Disadvantages
 - Cannot parallelize encryption
 - An error affects one other block (Toggles only one bit in the next block)

CFB: Cipher Feedback

25

• Each previous cipher block is feedback for the next stage

- Advantages
 - Does not reveal any patterns the plaintext may have
 - Does not use a decryption algorithm (The implementation is efficient)
- Disadvantages
 - Cannot parallelize encryption
 - An error affects one other block

Error Propagation in CFB 26 Initialization vector E E E P_1 P_2 P_N C_1 C_2 C_N Initialization vector Error bit E E E C_2 C_N P_1 P_2 P_N

Error Propagation in CFB 27 Initialization vector E E E P_1 P_2 P_N C_1 C_2 C_N Initialization vector Error bit 0 E E E C_2 C_N Propagated block P_1 P_N

CFB: Cipher Feedback

28

• Each previous cipher block is feedback for the next stage

- Advantages
 - Does not reveal any patterns the plaintext may have
 - Does not use a decryption algorithm (The implementation is efficient)
- Disadvantages
 - Cannot parallelize encryption (How about the decryption process?)
 - An error affects one other block

OFB: Output Feedback

• Each encrypted output is feed back for next stage

- Advantages
 - Does not reveal any patterns the plaintext may have
 - Does not use a decryption algorithm (+ Extra benefit?)
 - An error has no effect on other blocks (+ Error of one bit in ciphertext affects only one bit in the plaintext block)

Error Propagation in OFB

OFB: Output Feedback

• Each encrypted output is feed back for next stage

- Advantages
 - Does not reveal any patterns the plaintext may have
 - Does not use a decryption algorithm (+ Extra benefit?)
 - An error has no effect on other blocks (+ Error of one bit in ciphertext affects only one bit in the plaintext block)
- Disadvantages

- Cannot parallelize encryption and decryption

However, we can overcome this disadvantage by preparing encryption/decryption in advance

Boost Up OFB Mode

Encrypt **counter value** rather than any feedback value

Encrypt **counter value** rather than any feedback value

- Encrypt counter value rather than any feedback value
- Advantages
 - Does not reveal any patterns the plaintext may have
 - Can do parallel encryption/decryption in H/W or S/W (+ can preprocess in advance of need)
 - Does not use a decryption algorithm (+ Use the same structure for both encryption and decryption)
 - An error has no effect on other blocks (+ Error of one bit in ciphertext affects only one bit in the plaintext block)
- Disadvantages
 - Must ensure never reuse key/counter values, otherwise could break

- Symmetric-key cryptography: the same key for encryption and decryption
- Block cipher: basic building block of many cipher schemes – DES, Triple-DES, AES
- Block cipher mode of operations
 - ECB: Electronic Code Book
 - CBC: Cipher Block Chaining
 - CFB: Cipher FeedBack
 - OFB: Output FeedBack
 - CTR: CounTeR mode

