

CSE467: Computer Security

6. Asymmetric-key Encryption

Seongil Wi

Department of Computer Science and Engineering

Notification: Homework #1

- Programming assignment
- Due: April 4 (Friday), 11:59 PM
- Implementing encryption, decryption, signing program for the RSA cryptosystem
- Late submission will be assessed a penalty of 10% per day

Notification: Quiz #1

- Date: 3/31 (Mon.), Class time
- Scope
 - Everything learned in Cryptography!

- T/F problems
- Computation problems

Notification: Participation Points

 If you asked a question during class, please let me know your name and student ID

Notification: Hack Class101

- Find unknown security issues on Class101 websites!
- Instruction: <u>https://bounty.class101.net/</u>
 Foreigners should use a translator
- Activity period: 03/03 ~ 06/18
- DO NOT try anything illegal!

Hack Class101: Reported Bugs (Anonymized) ⁶

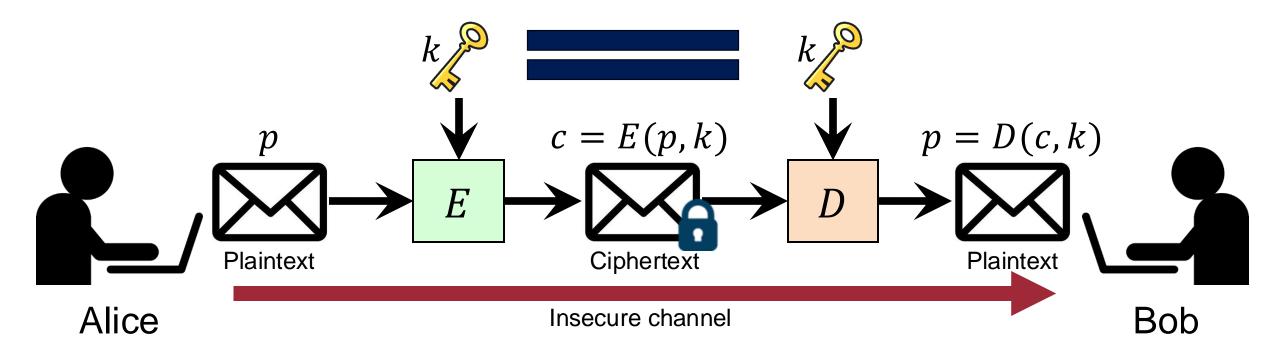
- Cross-Site Scripting (XSS) attacks
- Cross-Stie Request Forgery (CSRF) attacks
- · Leak of the decryption key for paid video contents

← → X Cass101.net	
문 M Gmail 🗈 YouTube ♀ 지도 ♀ Maps	class101.net 내용:
	1
	확인

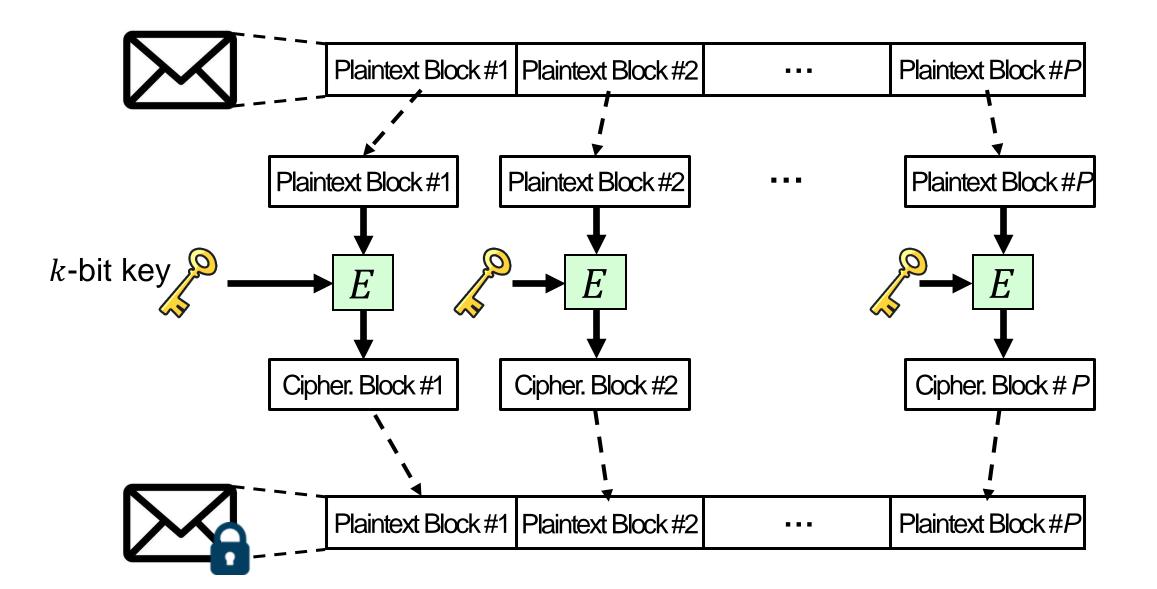
Your colleagues have already reported many vulnerabilities. I recommend getting involved in this activity as soon as possible ⁽²⁾

Recap: Symmetric-key Encryption

• Symmetric: the encryption and decryption keys are the same

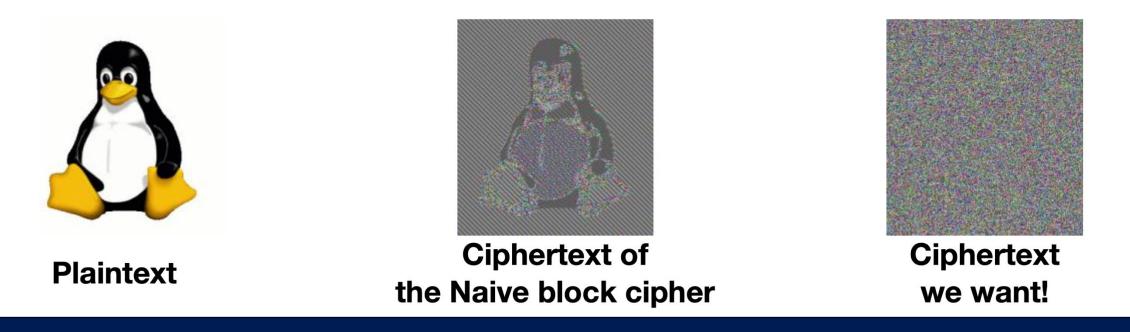


Recap: Practical Use of Block Cipher



Recap: Problems for the Example

• Identical plaintext blocks \rightarrow identical ciphertext blocks



How to generate different ciphertexts for the same plaintext?

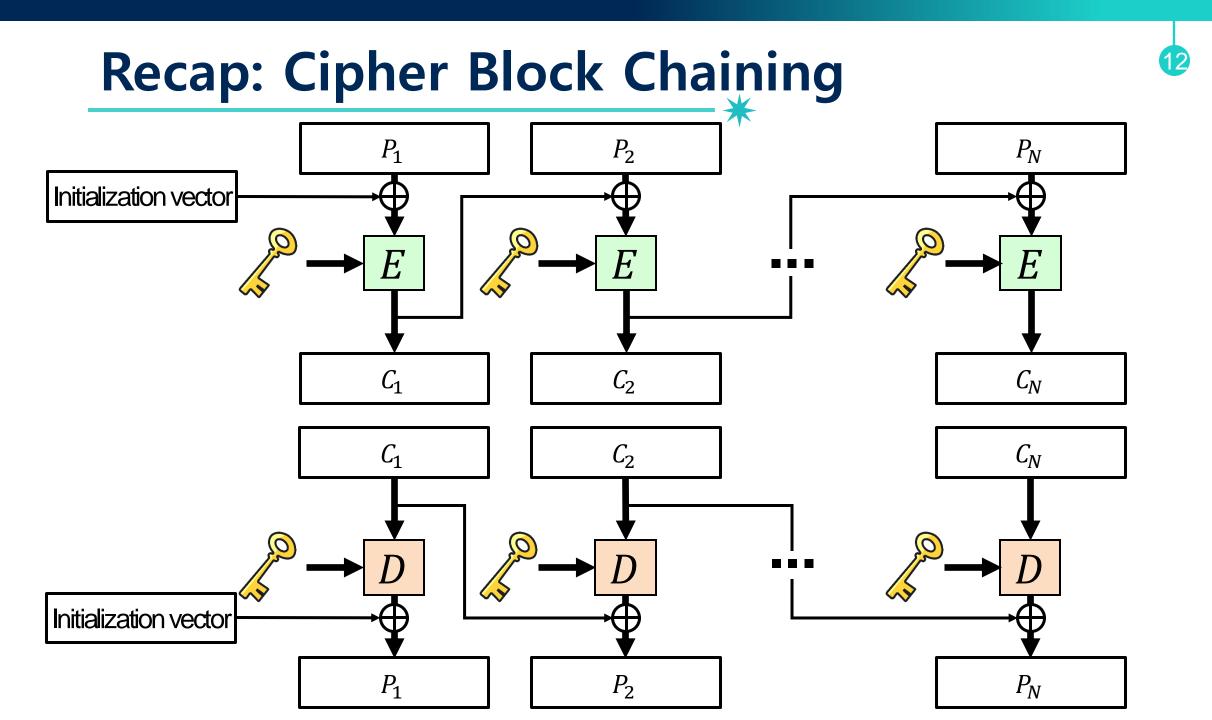
Recap: Block Cipher Modes of Operation

- Determine how to repeatedly apply a single-block operation to a sequence of blocks
- Different modes of operations
 - ECB: Electronic Code Book (The naïve one we've just discussed)
 - CBC: Cipher Block Chaining
 - CFB: Cipher FeedBack
 - OFB: Output FeedBack
 - -CTR: CounTeR mode

Shell Command

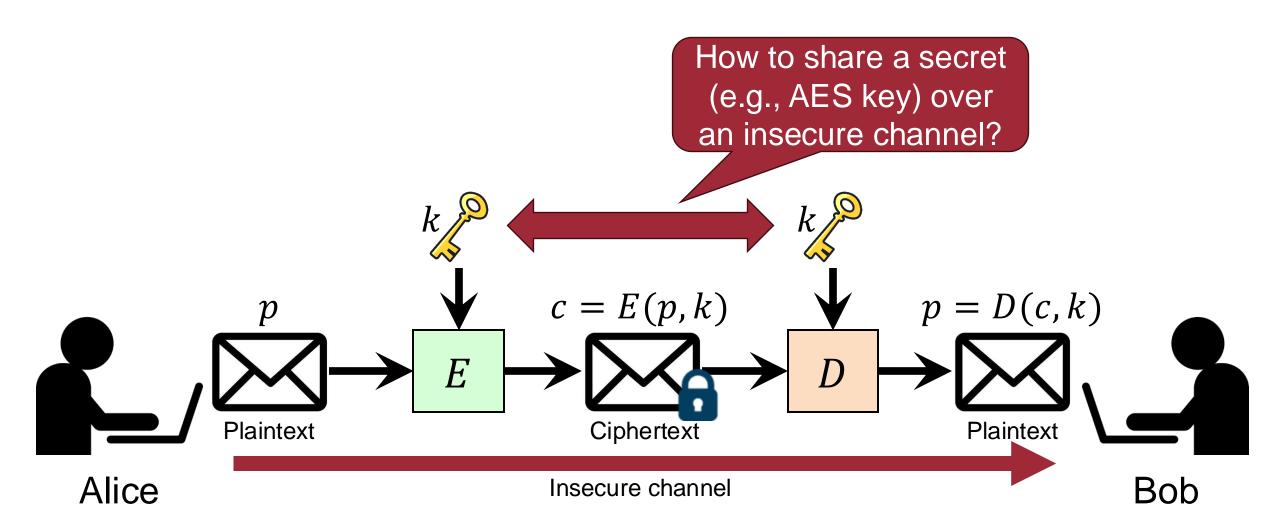
Block cipher mode

\$ openssl enc -aes-128-cfb -e -in plain.bin -out cipher.bin -K



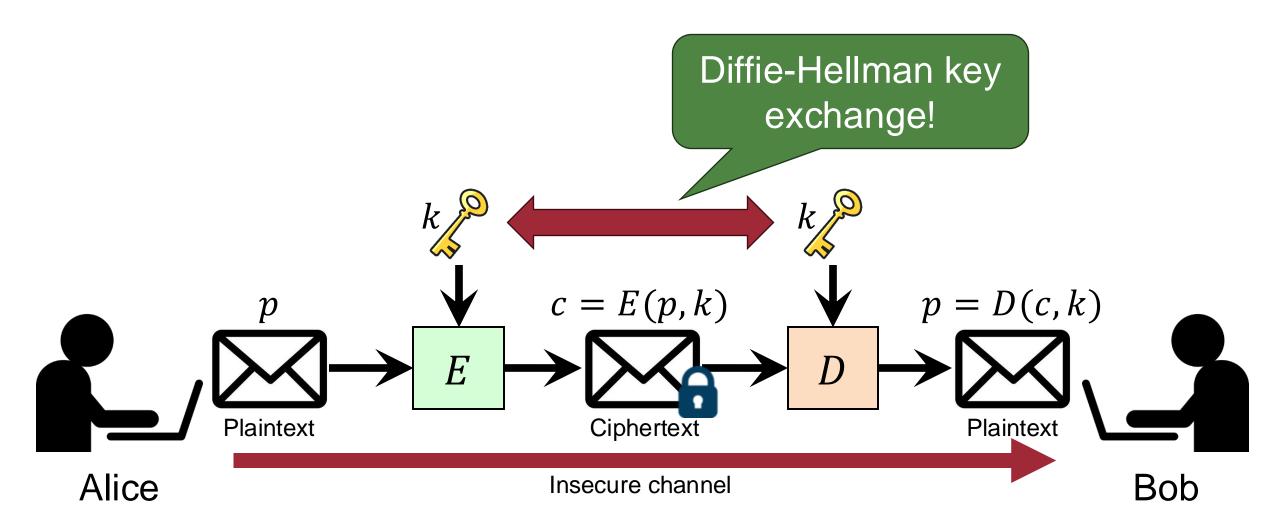
Recap: Symmetric-key Encryption

• Symmetric: the encryption and decryption keys are the same



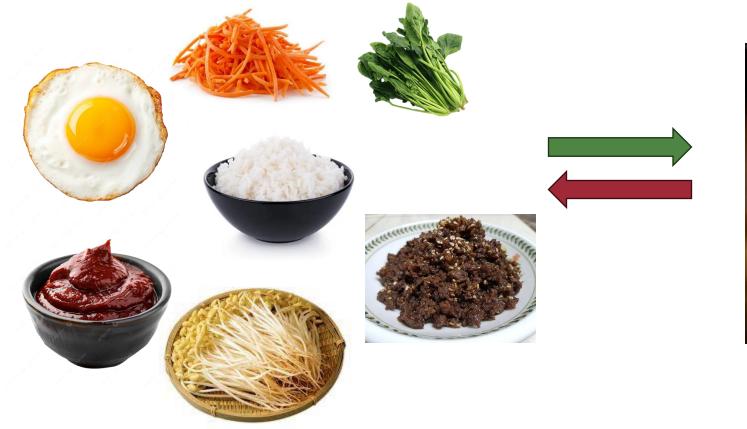
Motivation of the Diffie-Hellman Key Exchang

• Symmetric: the encryption and decryption keys are the same

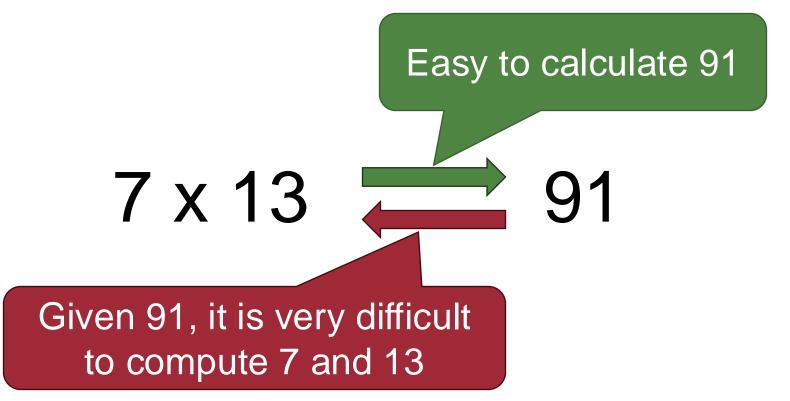


Diffie-Hellman key exchange

Easy in one direction, but hard in the reverse direction
 f is easy to compute, but *f*⁻¹ is difficult to compute

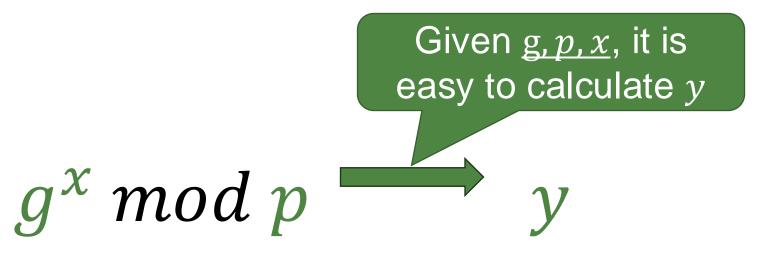


- Easy in one direction, but hard in the reverse direction
 - -f is easy to compute, but f^{-1} is difficult to compute



Integer Factorization Problem

- Easy in one direction, but hard in the reverse direction
 - -f is easy to compute, but f^{-1} is difficult to compute



- Easy in one direction, but hard in the reverse direction
 - -f is easy to compute, but f^{-1} is difficult to compute

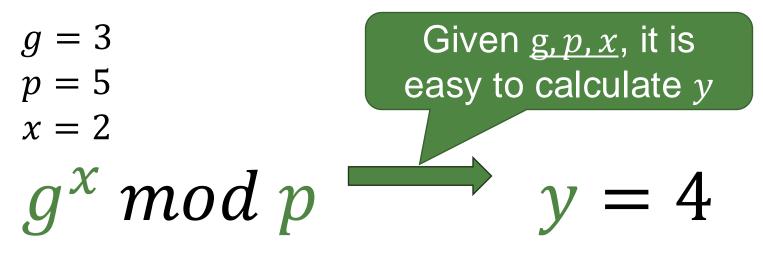
$$g = 3$$

$$p = 5$$

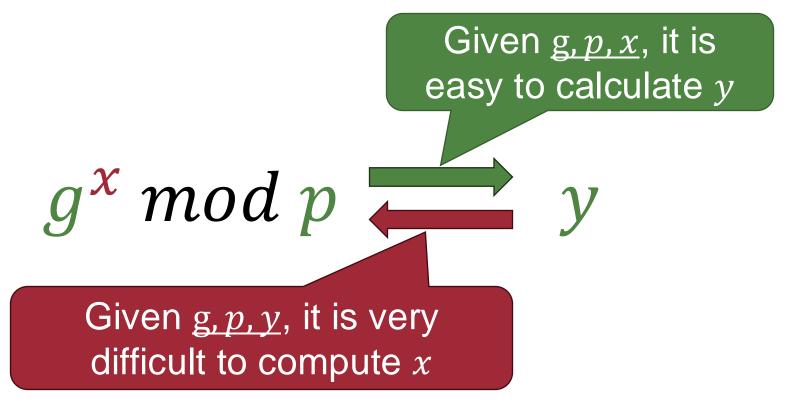
$$x = 2$$

$$g^{x} \mod p \longrightarrow y = ?$$

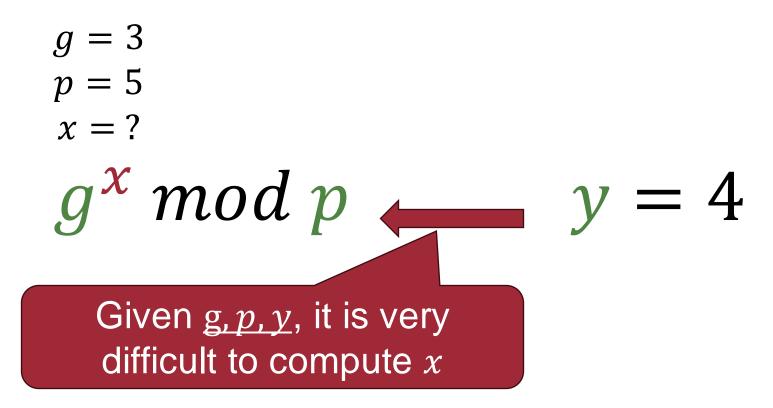
- Easy in one direction, but hard in the reverse direction
 - -f is easy to compute, but f^{-1} is difficult to compute



- Easy in one direction, but hard in the reverse direction
 - -f is easy to compute, but f^{-1} is difficult to compute



- Easy in one direction, but hard in the reverse direction
 - -f is easy to compute, but f^{-1} is difficult to compute



Discrete Logarithm Problem

- Easy in one direction, but hard in the reverse direction
 - -f is easy to compute, but f^{-1} is difficult to compute

$$g = 3$$

$$p = 5$$

$$x = ?$$

$$g^{\chi} \mod p \qquad y = 4$$

There is no efficient algorithm known for computing discrete logarithms in general

Diffie-Hellman Key Exchange (1)

$g^x \mod p \longrightarrow y$

Pick two value: Large prime p and integer g

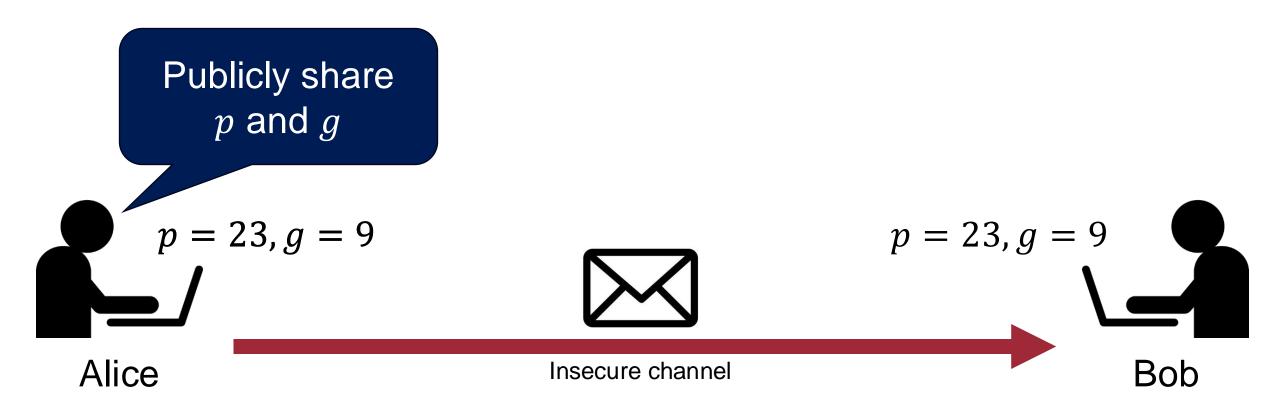
p = 23, g = 9

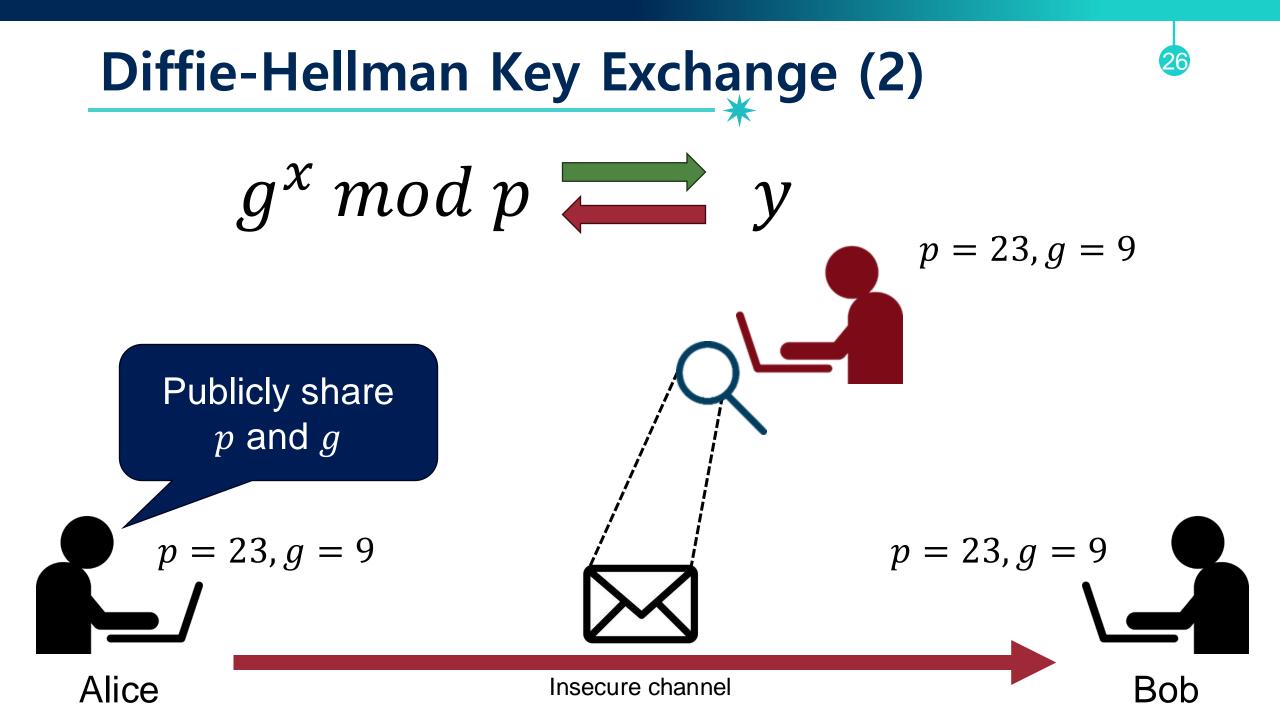
Alice

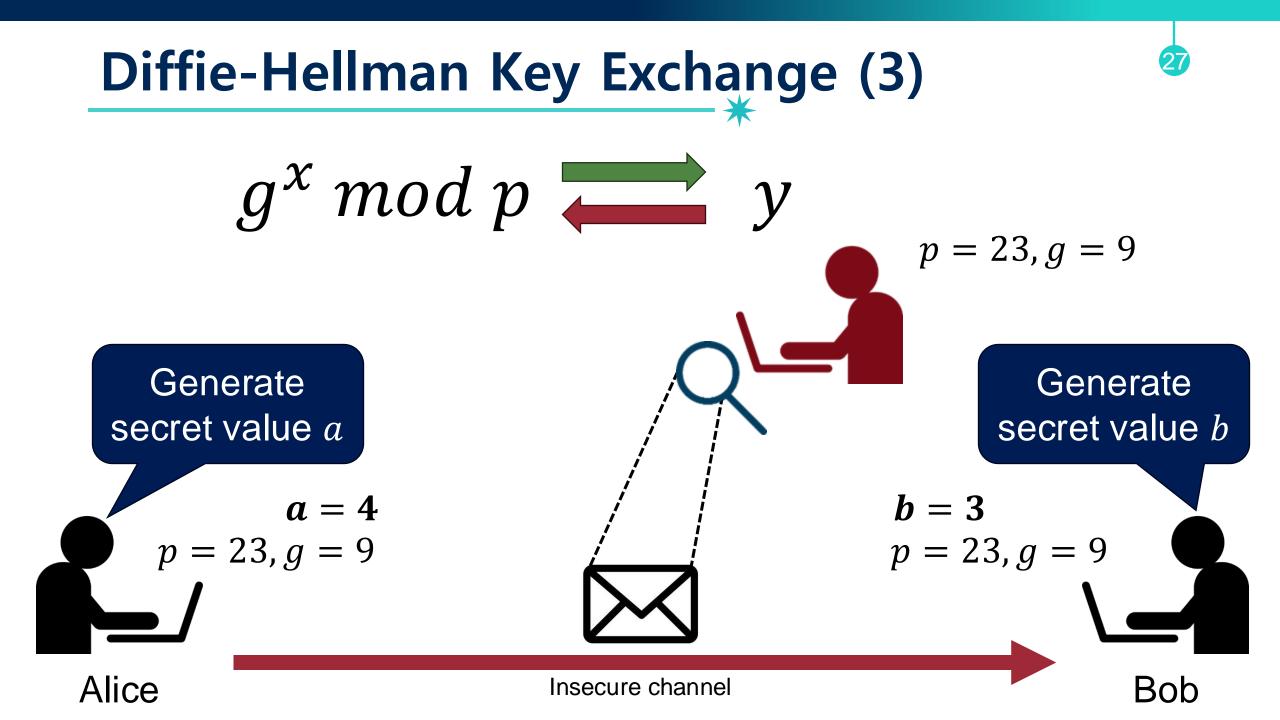
Insecure channel

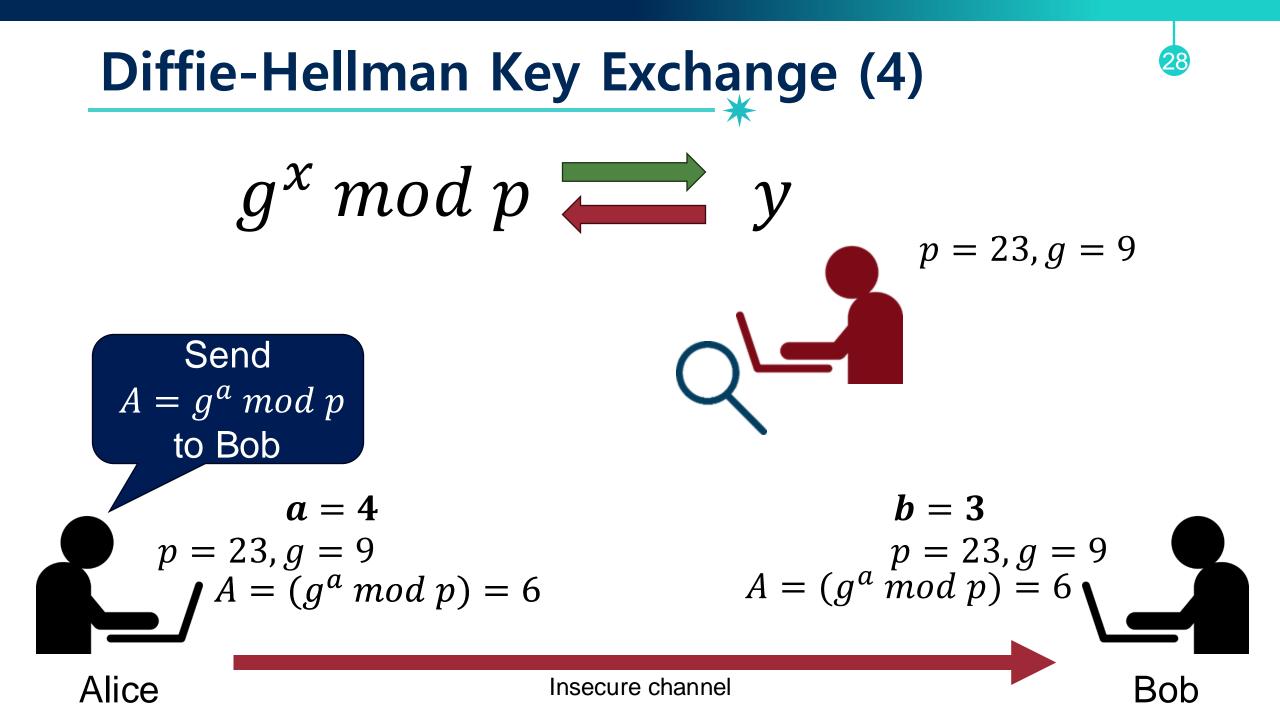
Diffie-Hellman Key Exchange (2)

 $g^x \mod p$ \mathcal{V}









Diffie-Hellman Key Exchange (4)

$$a = 4$$

$$p = 23, g = 9$$

$$A = (g^{a} \mod p) = 6$$

$$b = 3$$

$$p = 23, g = 9$$

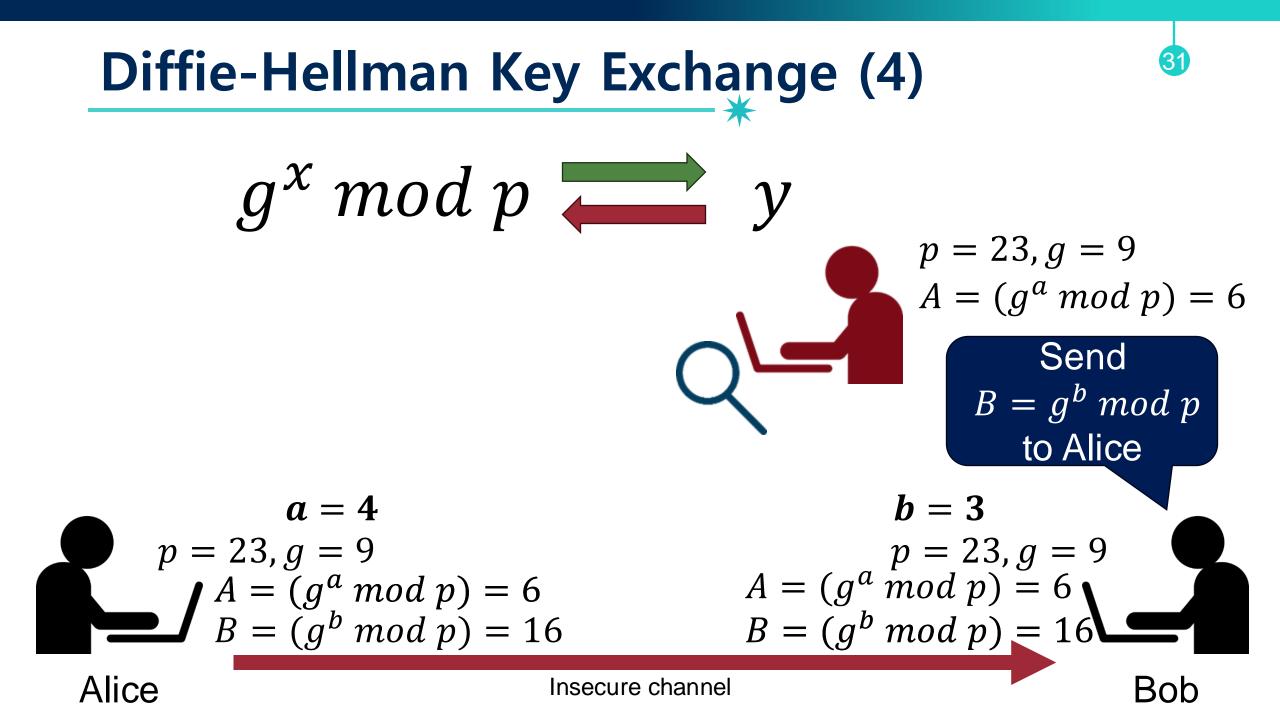
$$A = (g^{a} \mod p) = 6$$

$$A = (g^{a} \mod p) = 6$$
Bob

Diffie-Hellman Key Exchange (4) $q^x \mod p$ p = 23, g = 9 $A = (g^a \mod p) = 6$ Given $\underline{g}, \underline{p}, \underline{y}$, it is very difficult to compute *a* $A = (g^a \mod p) = 6$

Alice

Secure Condition Discrete Logarithm Problem



Diffie-Hellman Key Exchange (4)

$$a = 4$$

$$p = 23, g = 9$$

$$A = (g^{a} \mod p) = 6$$

$$B = (g^{b} \mod p) = 16$$

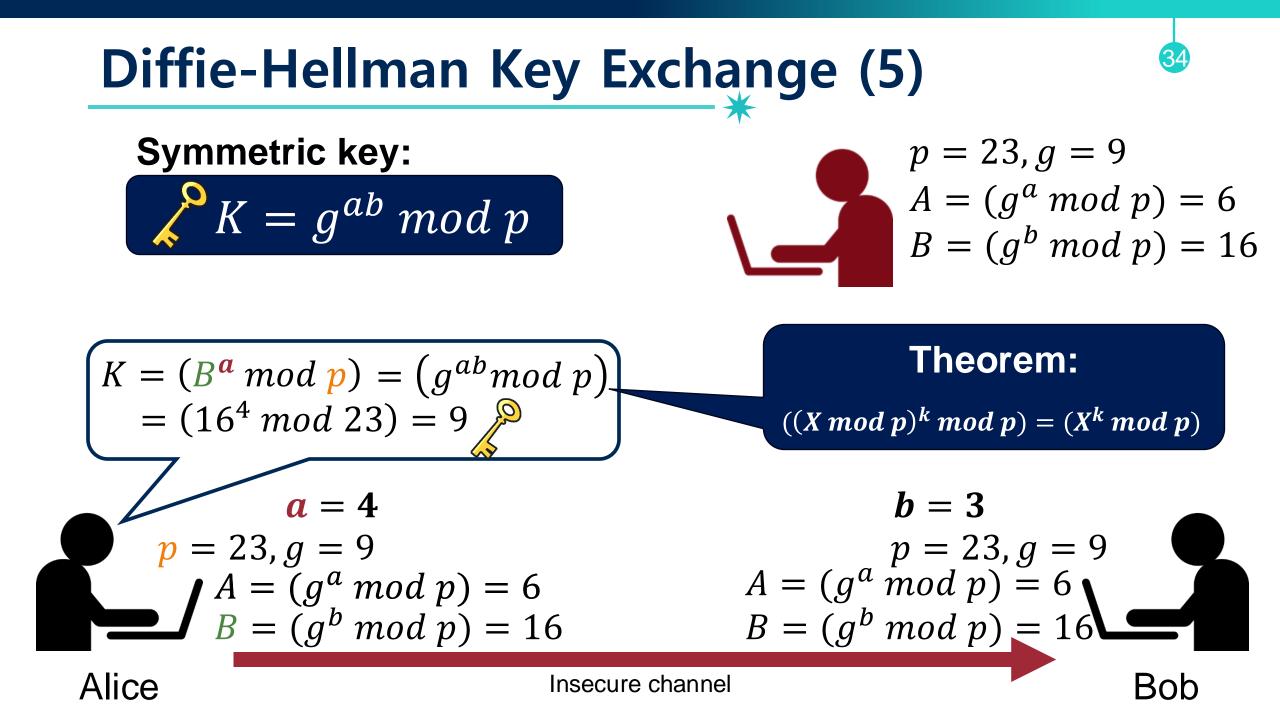
Diffie-Hellman Key Exchange (5) Symmetric key: $\swarrow K = g^{ab} \mod p$ $\Im K = g^{ab} \mod p$

$$a = 4$$

$$p = 23, g = 9$$

$$A = (g^{a} \mod p) = 6$$

$$B = (g^{b} \mod p) = 16$$



Diffie-Hellman Key Exchange (5) 35 Symmetric key: p = 23, g = 9 $A = (g^a \mod p) = 6$ $\bigwedge K = g^{ab} \mod p$ $B = (g^b \mod p) = 16$ $K = (A^{b} \mod p) = (g^{ab} \mod p)$ $K = (B^{a} \mod p) = (g^{ab} \mod p) \rfloor$ $= (6^3 \mod 23) = 9$ $= (16^4 \mod 23) = 9$ a = 4b = 3p = 23, g = 9 $A = (g^a \mod p) = 6$ p = 23, q = 9 $A = (g^a \mod p) = 6$ $B = (g^b \mod p) = 16$ $B = (q^b \mod p) = 16$ Alice Insecure channel

Diffi
Sym
The attacker cannot efficiently
compute
$$(g^{ab} \mod p)$$
without knowing a and b
$$p = 23, g = 9$$

$$A = (g^{a} \mod p) = 6$$

$$B = (g^{b} \mod p) = 16$$

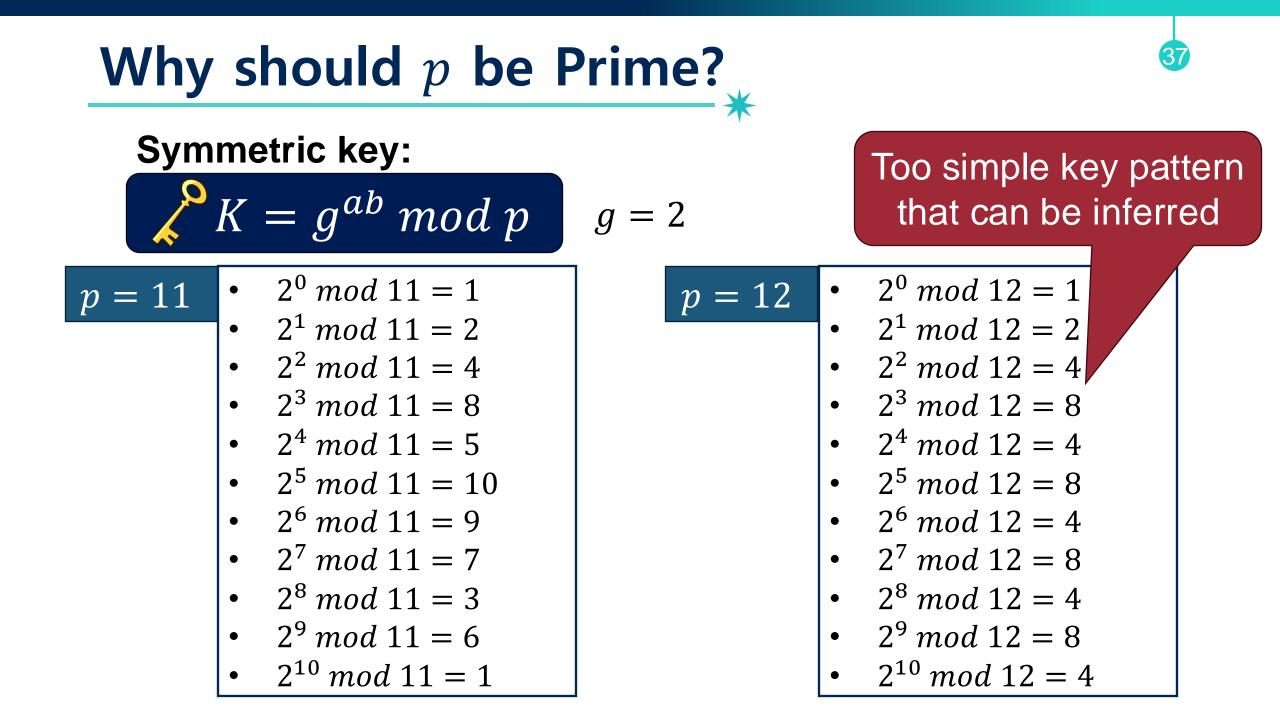
$$K = (B^{a} \mod p) = (g^{ab} \mod p)$$

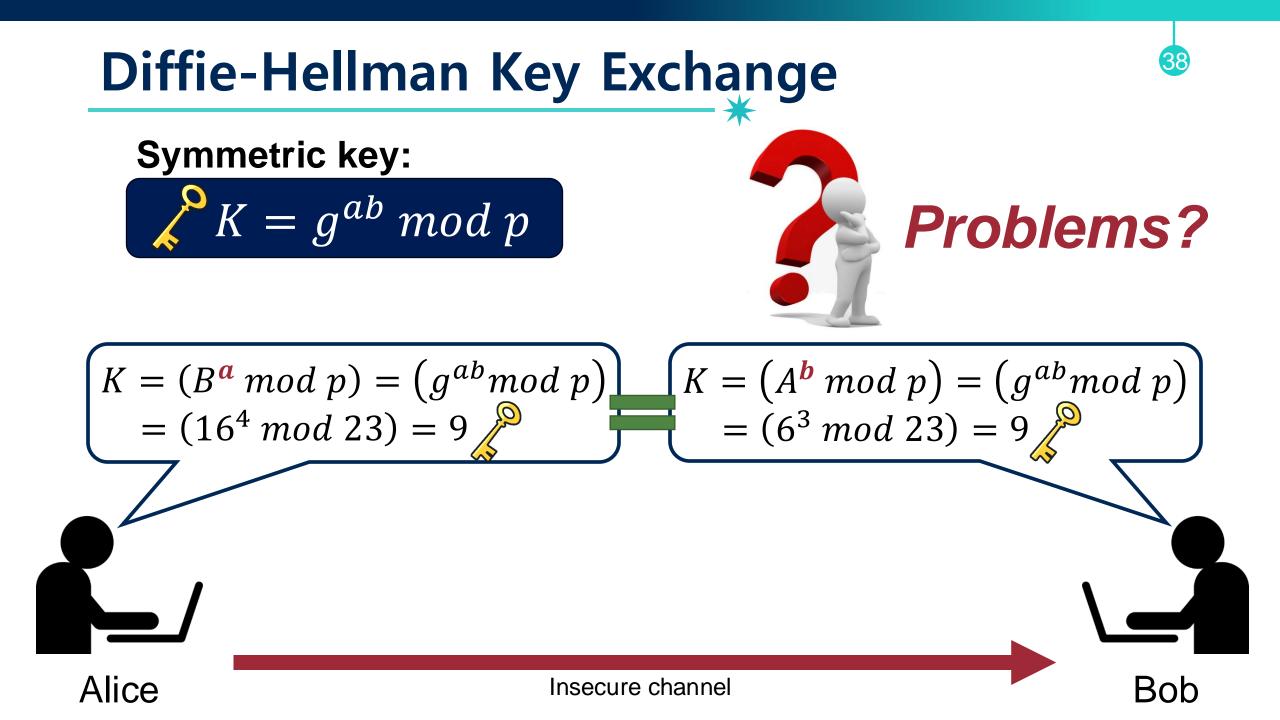
= (16⁴ mod 23) = 9
$$A = (g^{a} \mod p) = 6$$

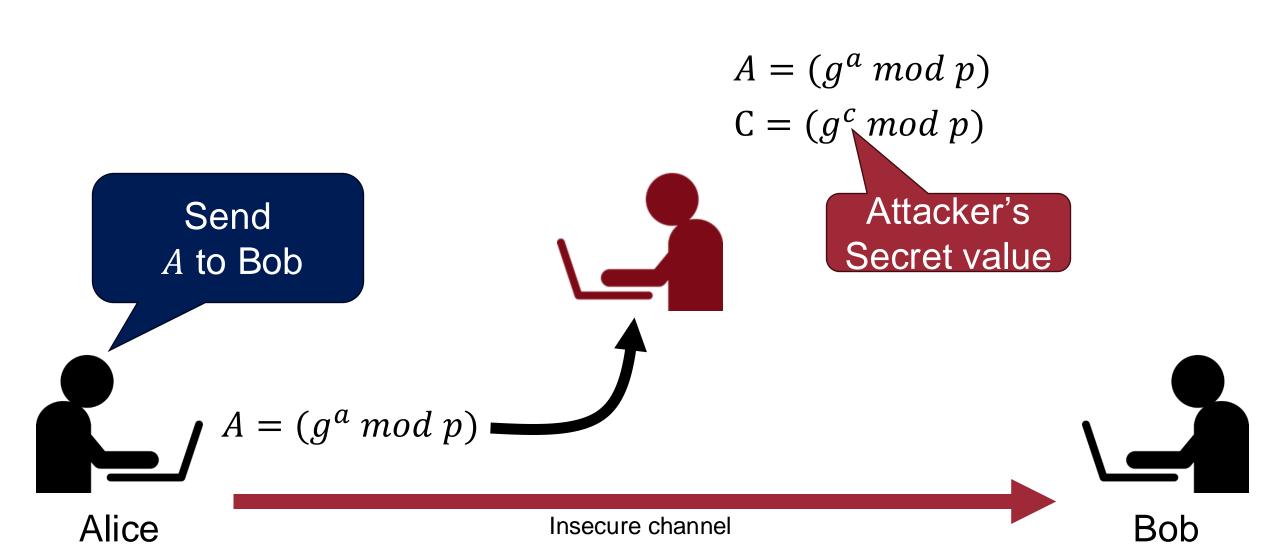
B = (g^{b} \mod p) = 16
$$K = (A^{b} \mod p) = (g^{ab} \mod p)$$

= (6³ mod p) = (g^{ab} \mod p) = (g^{ab} \mod p)
= (6³ mod p) = (g^{ab} \mod p) = (g^{ab} \mod p)
$$B = (g^{a} \mod p) = 6$$

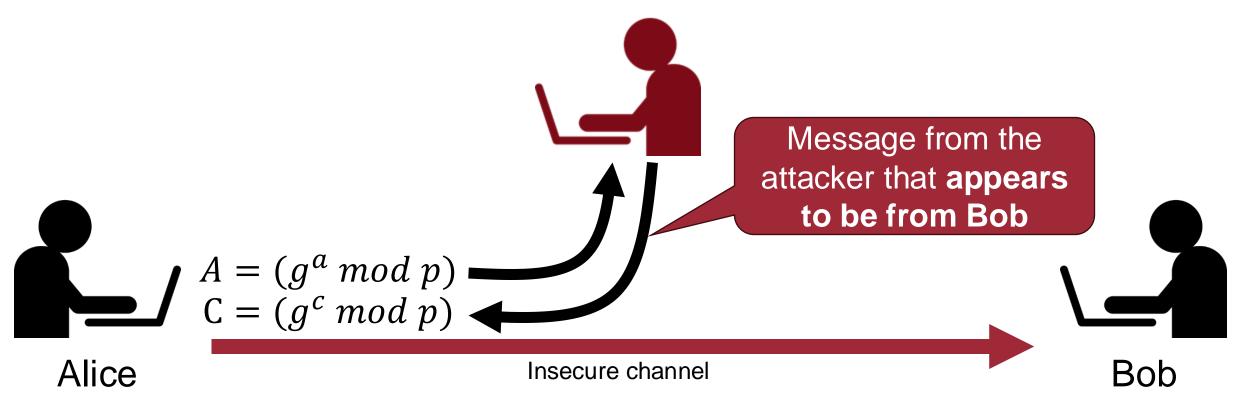
B = (g^{b} \mod p) = 16
B = (g^{b} \mod p) = 16
Bob







$$A = (g^a \mod p)$$
$$C = (g^c \mod p)$$



$$A = (g^{a} \mod p)$$

$$C = (g^{c} \mod p)$$

$$K1 = g^{ac} \mod p$$

$$A = (g^{a} \mod p)$$

$$C = (g^{c} \mod p)$$

$$K1 = g^{ac} \mod p$$

$$B = (g^{b} \mod p)$$

$$C = (g^{c} \mod p)$$

$$K2 = g^{bc} \mod p$$

$$K1 = g^{ac} \mod p$$

$$K2 = g^{bc} \mod p$$

$$K1 = g^{ac} \mod p$$

$$K2 = g^{bc} \mod p$$

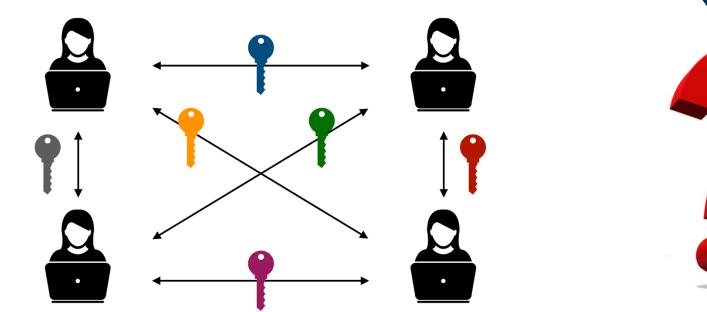
Problem (2): Maintenance Problems

- Recap: the same key shared between two parties
- What happens if there are many users?

$$-n$$
 users: $\binom{n}{2} = n(n-1)/2$

– Example: 100 users \rightarrow 4,950 keys

Key distribution and maintenance problem



How to solve this

issue?

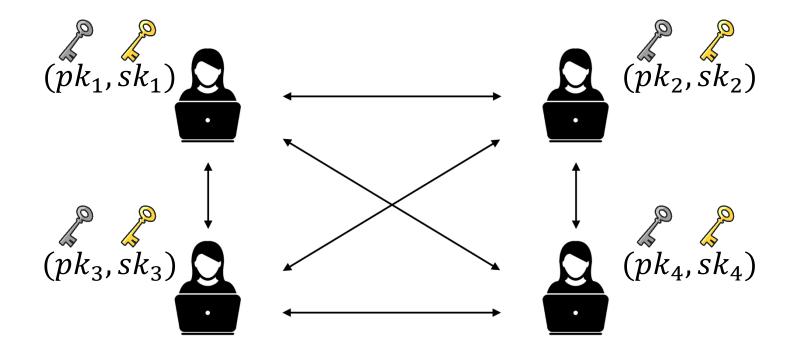
Each party has two distinct keys: public key and private key

 Also known as public-key algorithm

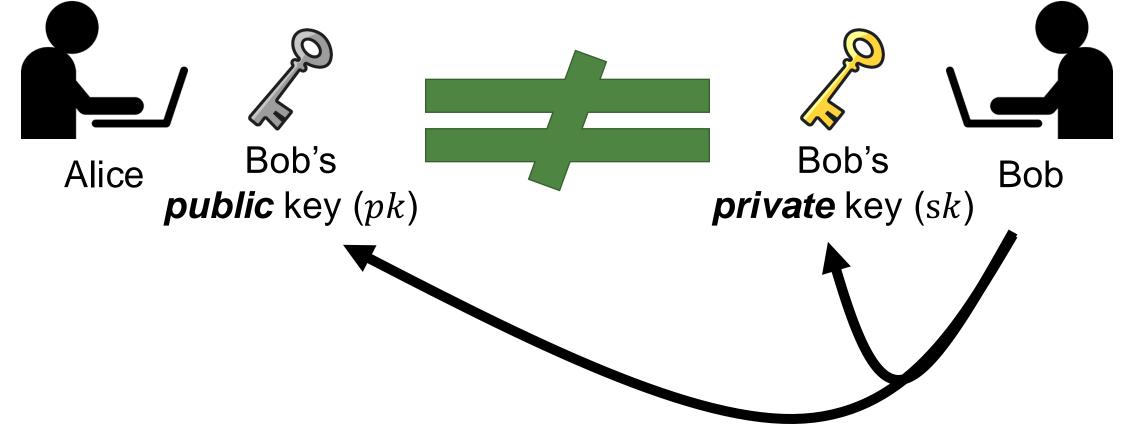
46

Invented in 1976 by Diffie and Hellman (ACM Turing Award 2015)

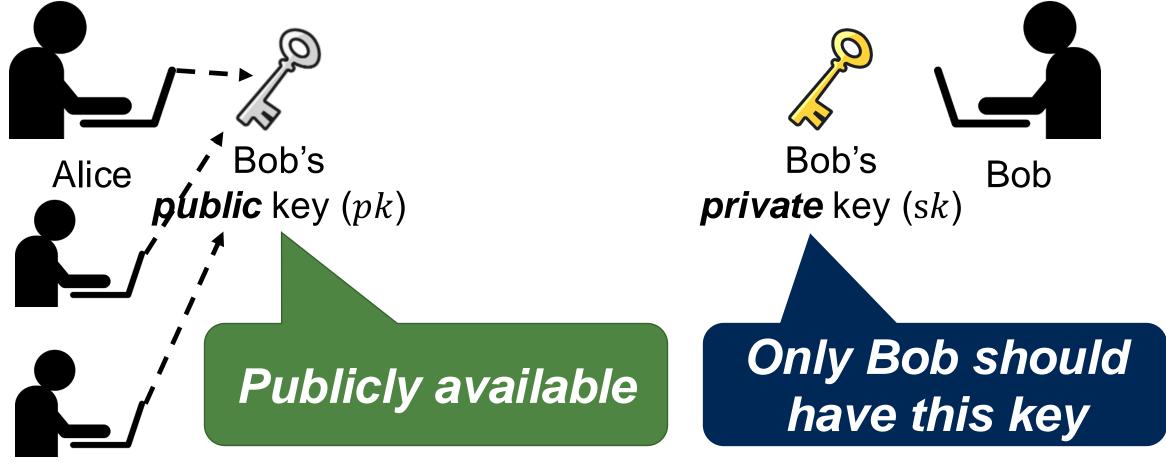
- pk: public key, widely disseminated, used for encryption
- sk: private key kept secretly, used for decryption
- More robust against man-in-the-middle attack
- Good maintenance: n users $\rightarrow 2n$ keys



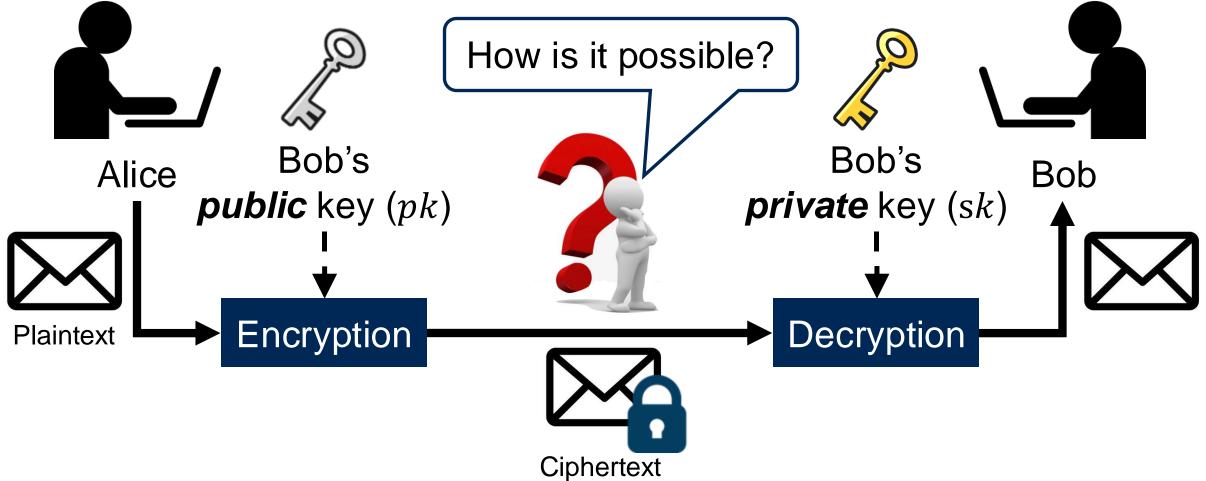
- *pk*: public key, widely disseminated, used for encryption
- sk: private key kept secretly, used for decryption



- *pk*: public key, widely disseminated, used for encryption
- sk: private key kept secretly, used for decryption



- *pk*: public key, widely disseminated, used for encryption
- sk: private key kept secretly, used for decryption

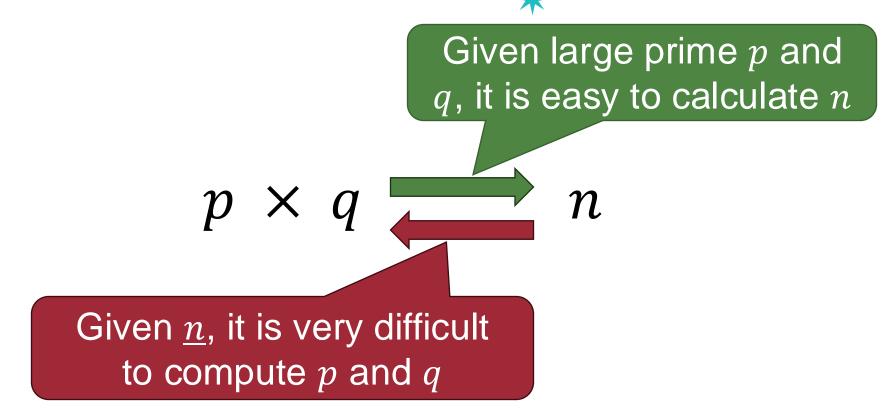


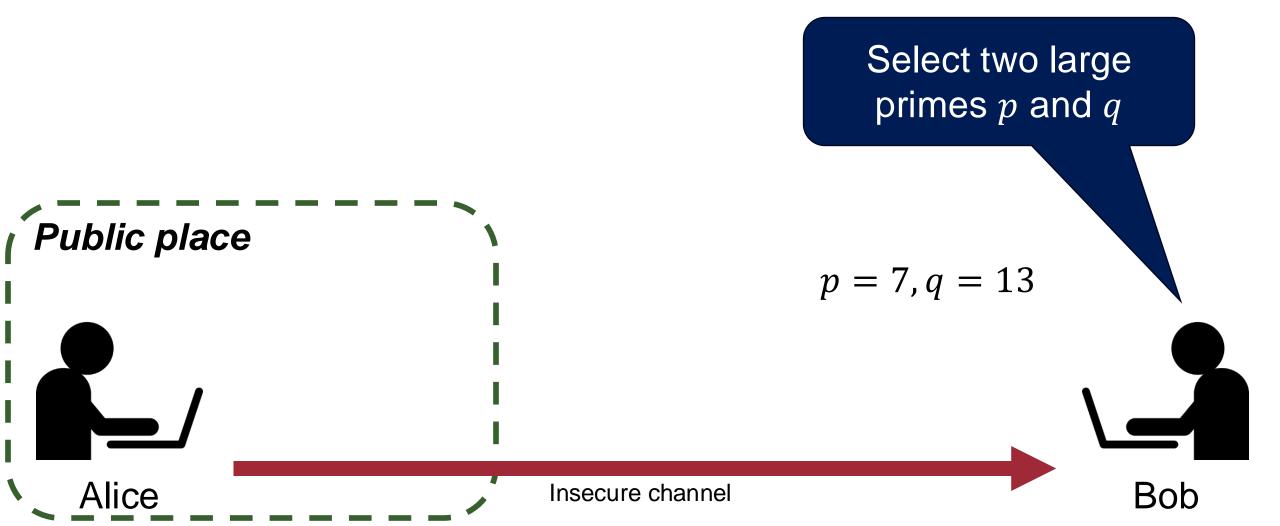
RSA Cryptosystem

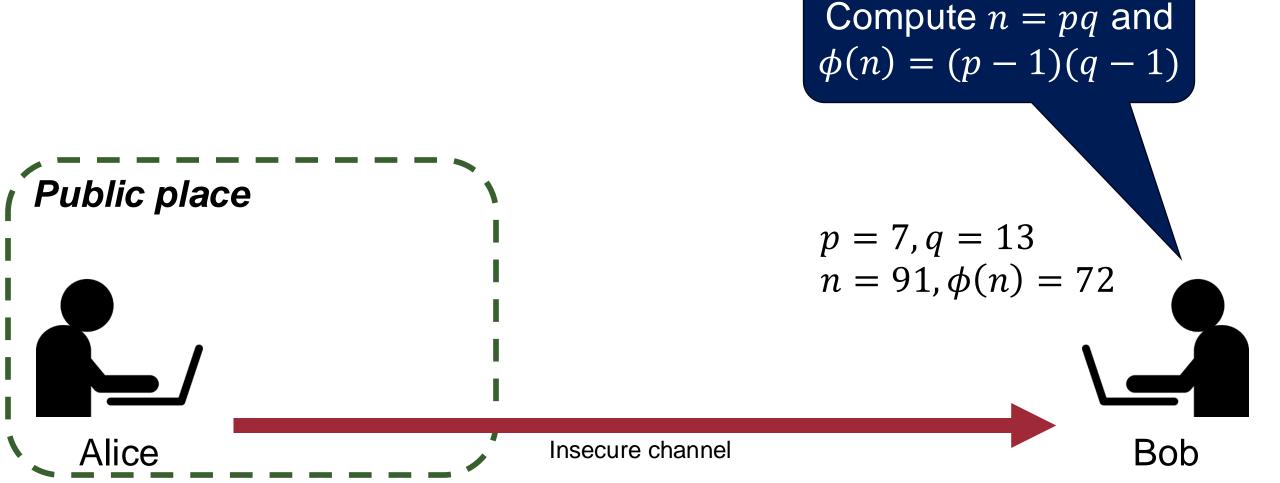
RSA Cryptosystem

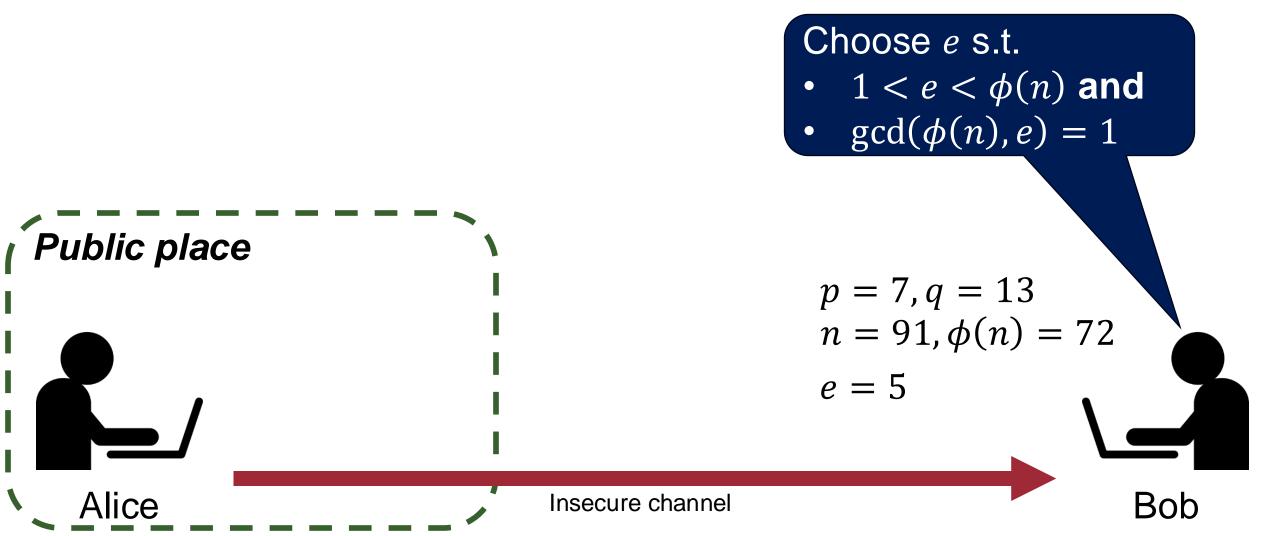
- Invented by Rivest, Shamir, and Adleman (MIT) in 1977
 ACM Turing award in 2002
- Rely on the practical difficulty of factoring the product of two large prime numbers
 - Security based on Prime Factorization Problem

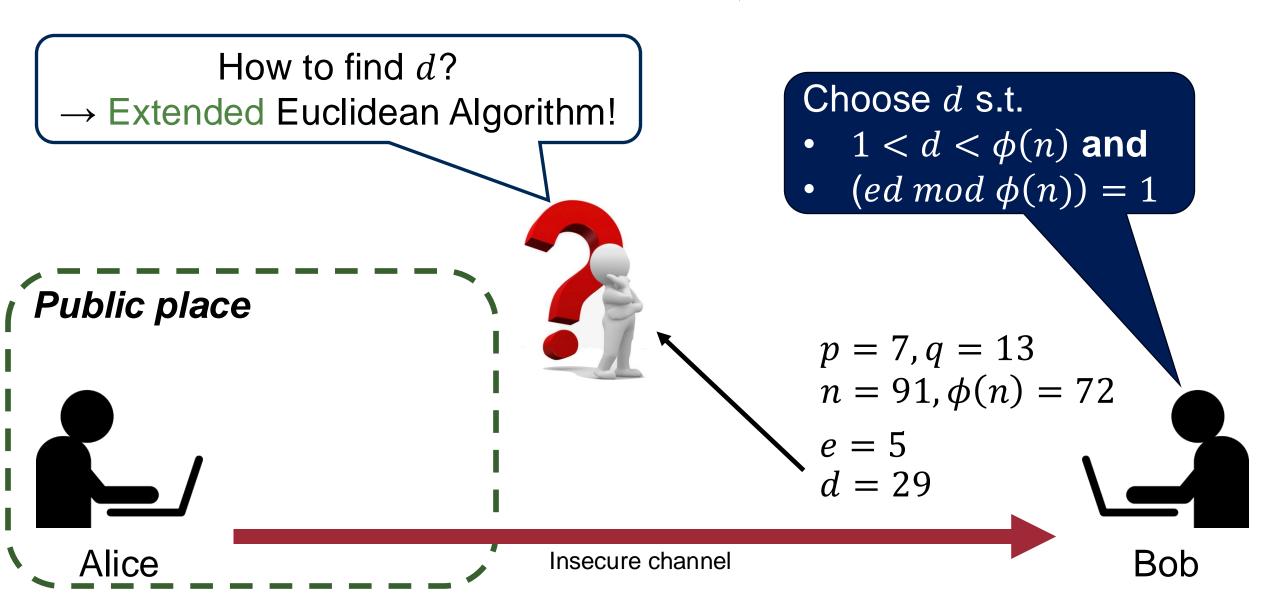
Prime Factorization Problem











58

Goal: Finding Greatest Common Divisor (GCD)

Fact 1: gcd(a, 0) = aFact 2: gcd(a, b) = gcd(b, r), where *r* is the remainder of dividing *a* by *b* (*a* > *b*)

gcd(72,5)

59

Goal: Finding Greatest Common Divisor (GCD)

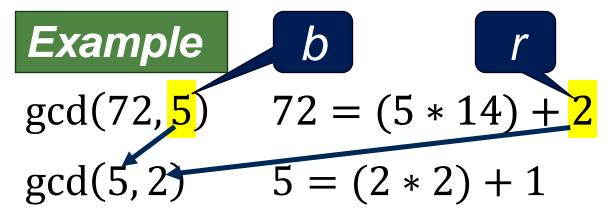
Fact 1: gcd(a, 0) = aFact 2: gcd(a, b) = gcd(b, r), where *r* is the remainder of dividing *a* by *b* (*a* > *b*)

gcd(72,5) 72 = (5 * 14) + 2

Euclidean Algorithm

Goal: Finding Greatest Common Divisor (GCD)

Fact 1: gcd(a, 0) = aFact 2: gcd(a, b) = gcd(b, r), where *r* is the remainder of dividing *a* by *b* (*a* > *b*)



Goal: Finding Greatest Common Divisor (GCD)

Fact 1: gcd(a, 0) = aFact 2: gcd(a, b) = gcd(b, r), where *r* is the remainder of dividing *a* by *b* (*a* > *b*)

Example

gcd(72,5)
$$72 = (5 * 14) + 2$$

gcd(5,2) $5 = (2 * 2) + 1$
gcd(2,1) $2 = (2 * 1) + 0$

Euclidean Algorithm

Goal: Finding Greatest Common Divisor (GCD)

Fact 1: gcd(a, 0) = a**Fact 2**: gcd(a, b) = gcd(b, r), where r is the remainder of dividing a by b (a > b)

Example

- gcd(72, 5)72 = (5 * 14) + 2
- gcd(5,2) 5 = (2 * 2) + 1
- gcd(2,<mark>,1</mark>)
 - 2 = (2 * 1) -

Euclidean Algorithm

Goal: Finding Greatest Common Divisor (GCD)

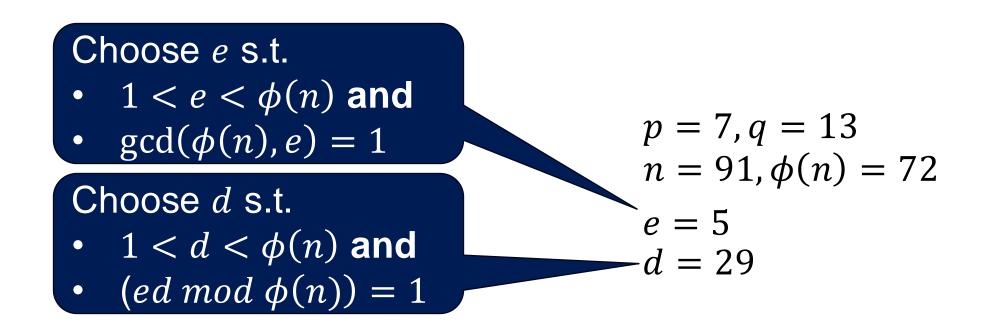
Fact 1: gcd(a, 0) = a**Fact 2**: gcd(a, b) = gcd(b, r), where r is the remainder of dividing a by b (a > b)

Example

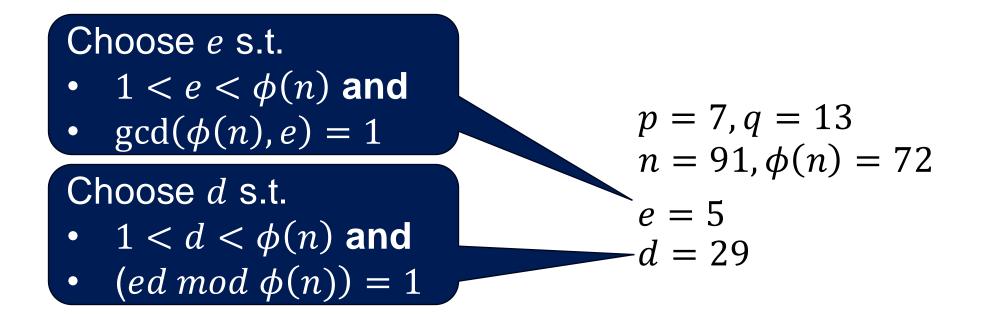
- gcd(72,5) 72 = (5 * 14) + 2
- gcd(5,2) 5 = (2 * 2) + 1
- gcd(2,1) 2 = (2 * 1) + 0
- gcd(1, 0) = 1

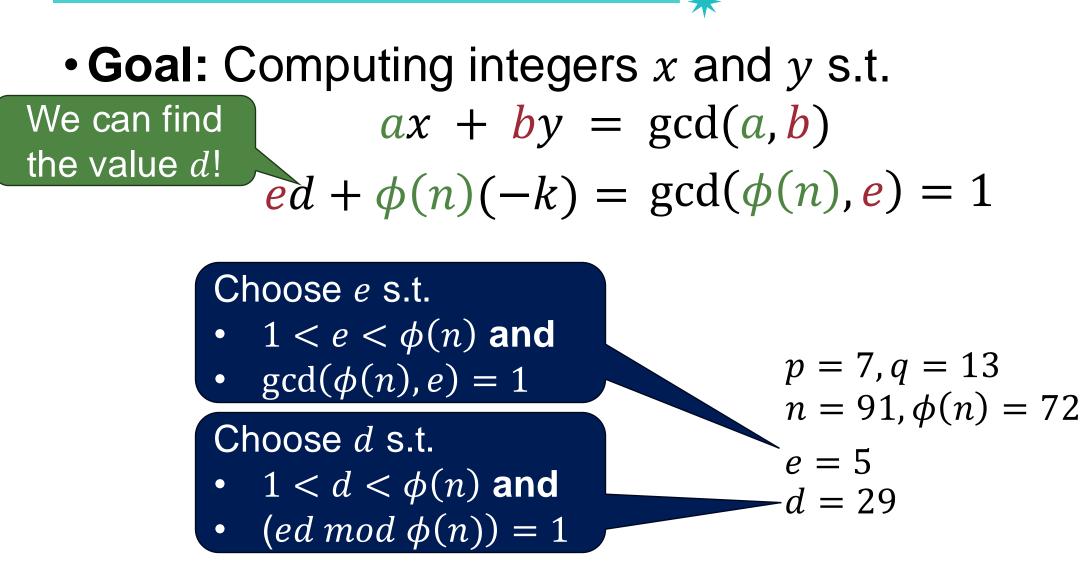
• Goal: Computing integers x and y s.t. ax + by = gcd(a, b)

• Goal: Computing integers x and y s.t. ax + by = gcd(a, b)



• Goal: Computing integers x and y s.t. ax + by = gcd(a, b) $ed + \phi(n)(-k) = gcd(\phi(n), e) = 1$





• Goal: Computing integers x and y s.t. ax + by = gcd(a, b) $ed + \phi(n)(-k) = \gcd(\phi(n), e) = 1$ $(e = 5, \phi(n) = 72)$

Example

gcd(1,0) = 1

- gcd(72, 5) 72 = (5 * 14) + 2

gcd(2,1) 2 = (2 * 1) + 0

- gcd(5,2) 5 = (2 * 2) + 1

• Goal: Computing integers x and y s.t. ax + by = gcd(a, b) $ed + \phi(n)(-k) = gcd(\phi(n), e) = 1$ $(e = 5, \phi(n) = 72)$

69

Example

gcd(72,5) 72 = (5 * 14) + 2gcd(5,2) 5 = $(2 * 2) + 1 \implies 5 - (2 * 2) = 1$ gcd(2,1) 2 = (2 * 1) + 0gcd(1,0) = 1

• Goal: Computing integers x and y s.t. ax + by = gcd(a, b) $ed + \phi(n)(-k) = \gcd(\phi(n), e) = 1$ $(e = 5, \phi(n) = 72)$ 2 = 72 - (5 * 14)Example gcd(72, 5)72 = (5 * 14) + 2gcd(5,2) $5 = (2 * 2) + 1 \implies 5 - (2 * 2) = 1$ gcd(2,1) 2 = (2 * 1) + 0gcd(1, 0) = 1

ax + by = gcd(a, b) $ed + \phi(n)(-k) = \gcd(\phi(n), e) = 1$ $(e = 5, \phi(n) = 72)$ Example gcd(72, 5) $72 = (5 * 14) + 2 \implies 5 - ((72 - 5 * 14) * 2) = 1$ gcd(5,2) 5 = (2 * 2) + 1 \implies 5 - (2 * 2) = 1 gcd(2,1) 2 = (2 * 1) + 0gcd(1,0) = 1

Extended Euclidean Algorithm

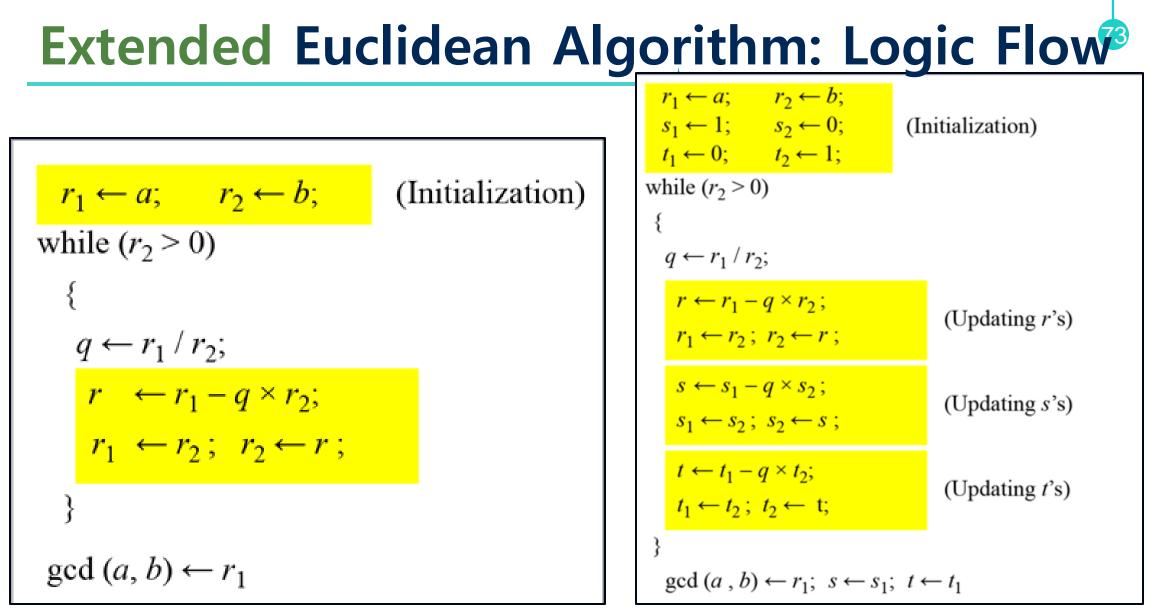
• Goal: Computing integers x and y s.t.

Extended Euclidean Algorithm • Goal: Computing integers x and y s.t. ax + by = gcd(a, b) $ed + \phi(n)(-k) = \gcd(\phi(n), e) = 1$ $(e = 5, \phi(n) = 72)$ Example gcd(72, 5) $72 = (5 * 14) + 2 \implies 5 * 29 + 72(-2) = 1$ gcd(5,2) $5 = (2 * 2) + 1 \implies 5 - (2 * 2) = 1$ gcd(2,1) 2 = (2 * 1) + 0x = d = 29

gcd(1,0) = 1

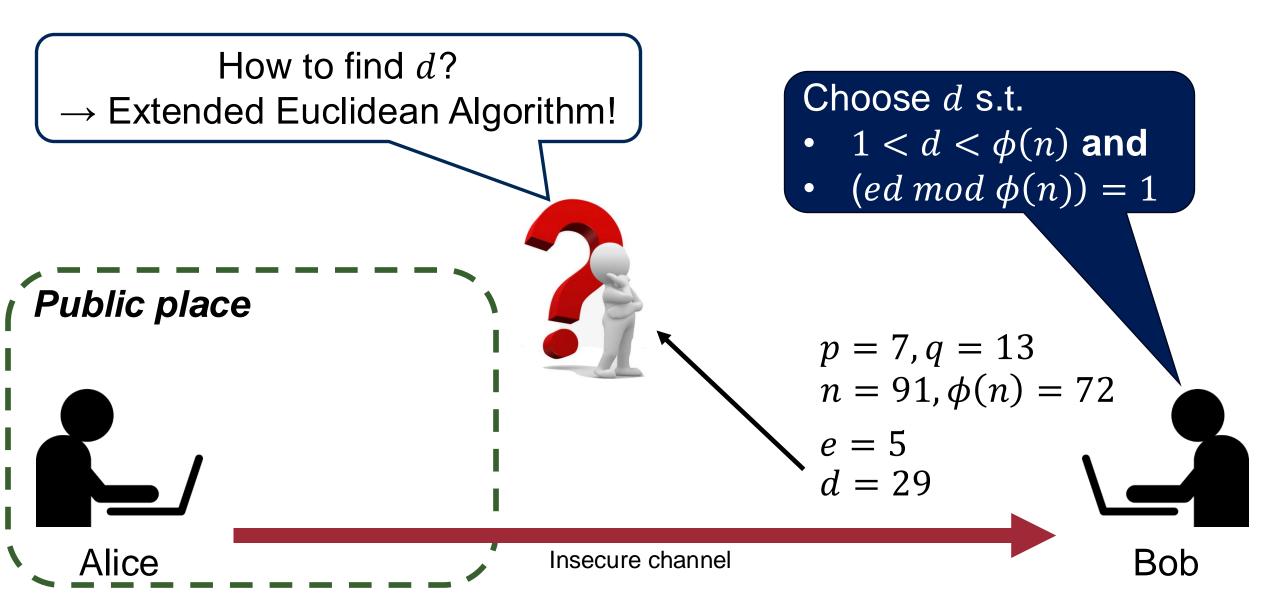
72

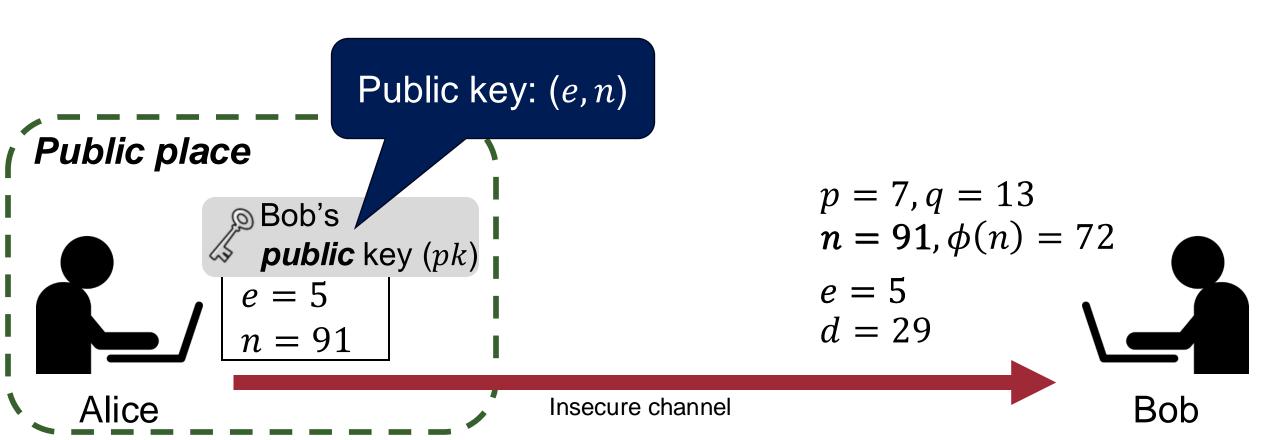
v = -k = -2

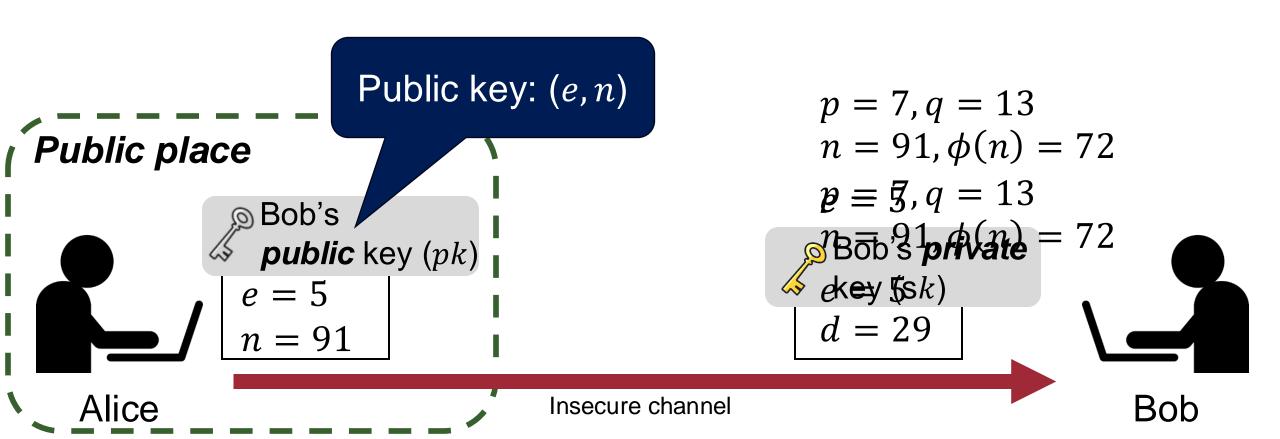


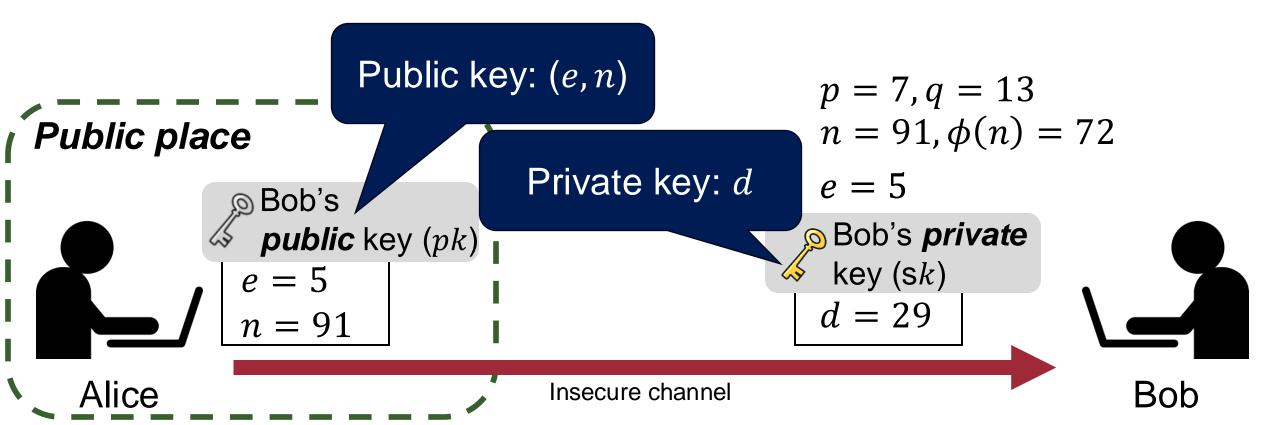
Euclidean Algorithm

Extended Euclidean Algorithm

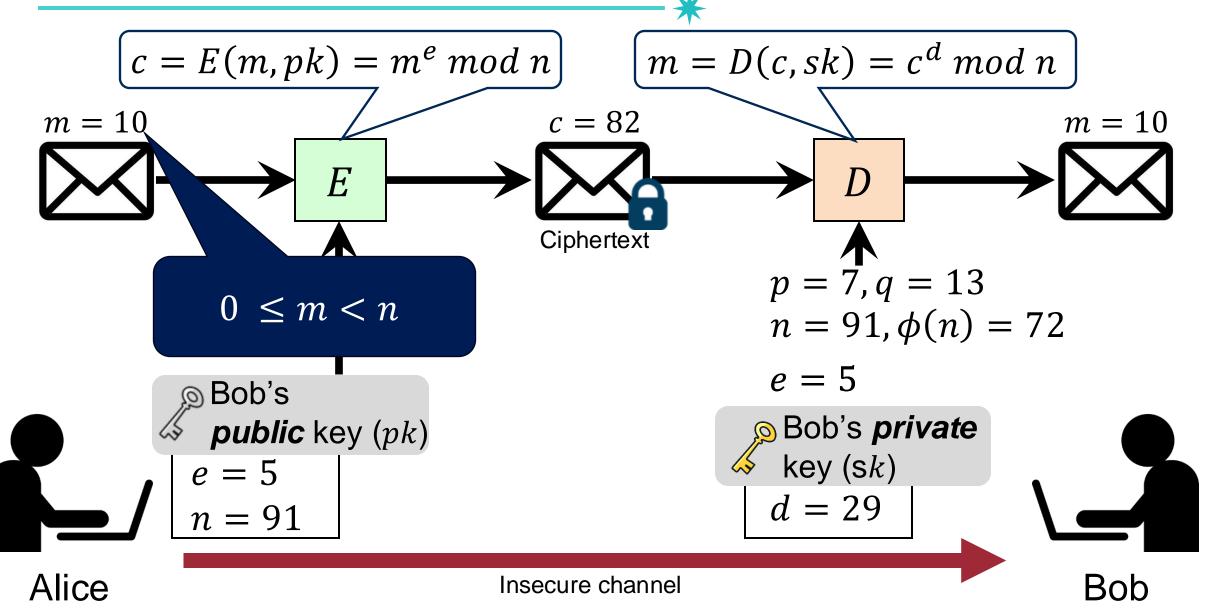




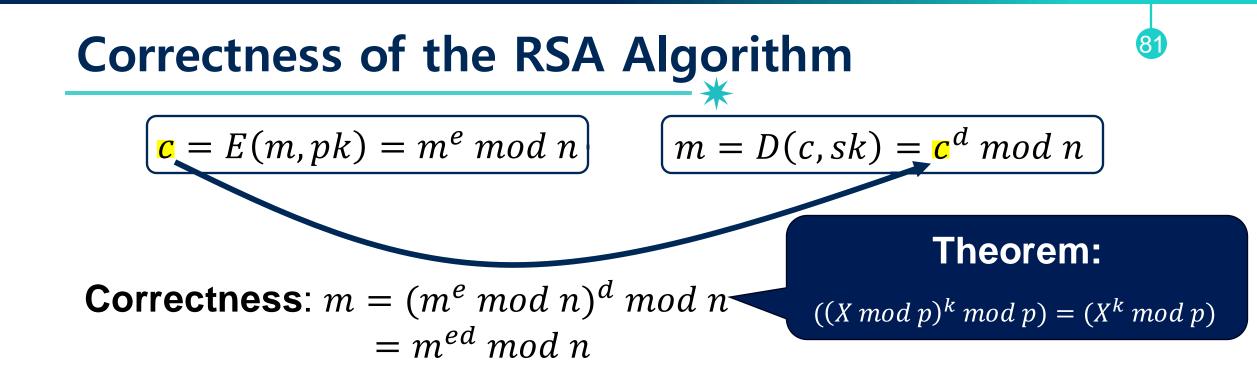


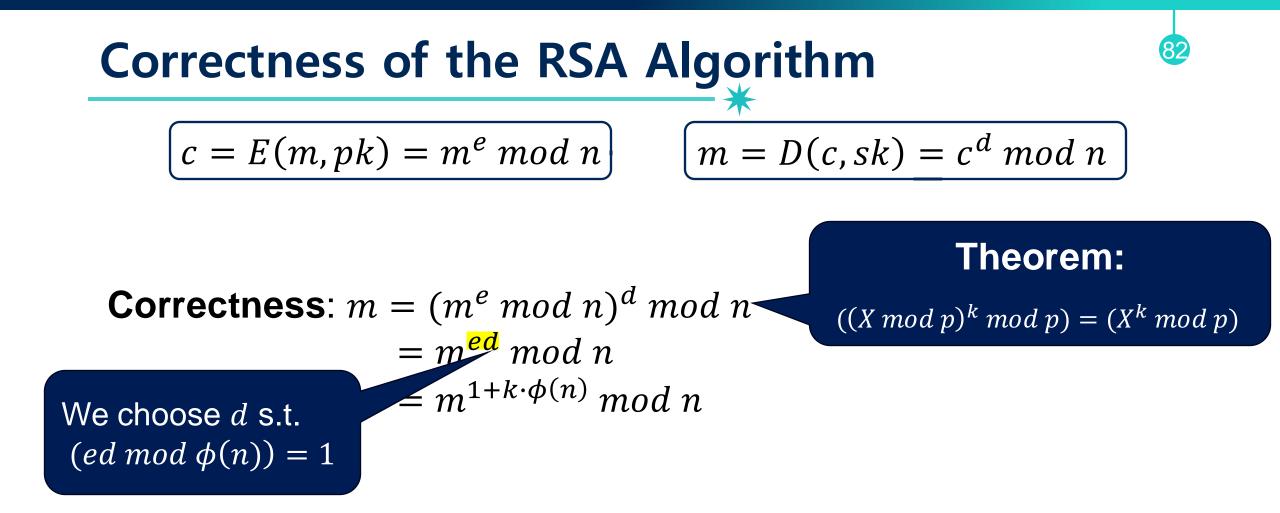


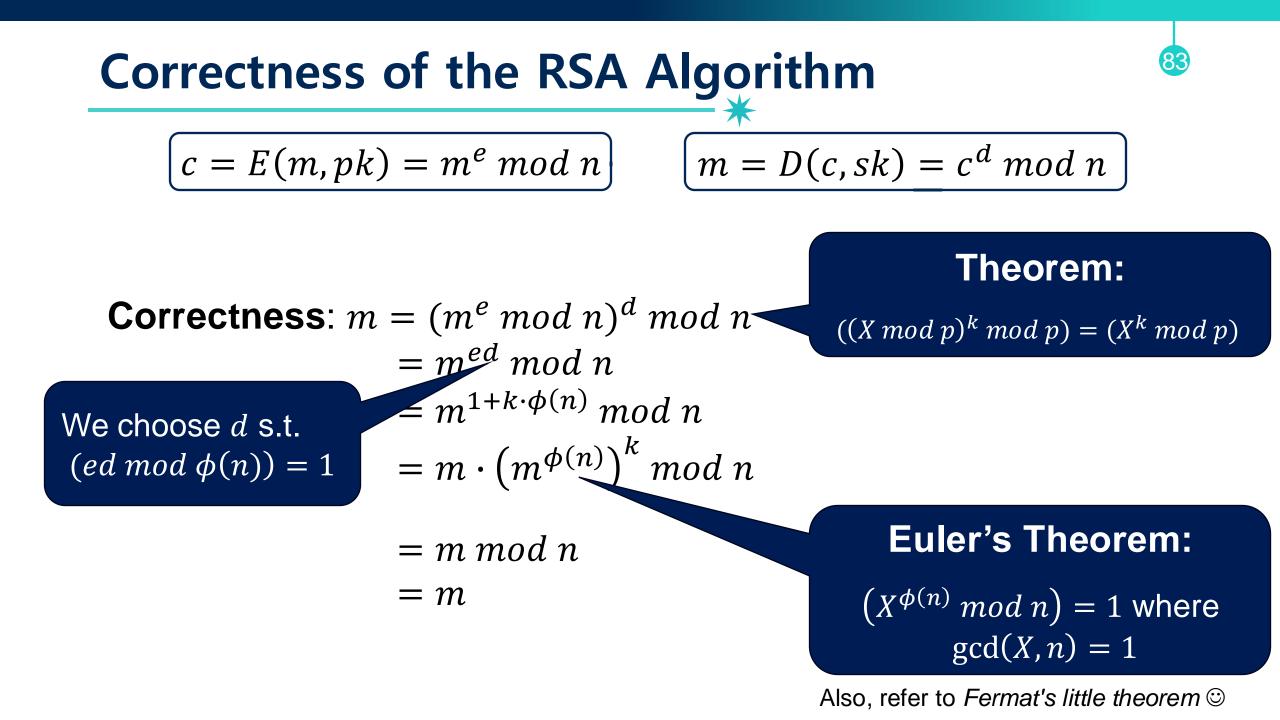
RSA Algorithm (2): Encryption and Decryption[®]



RSA Algorithm (2): Encryption and Decryption⁸⁰ $m = D(c, sk) = c^d \mod n$ $c = E(m, pk) = m^e \mod n$ m = 10*c* = 82 m = 10E Ciphertext p = 7, q = 13 $n = 91, \phi(n) = 72$ e=5Bob's 🔊 Bob's private **public** key (pk)key (sk)e = 5d = 29n = 91Alice Insecure channel Bob



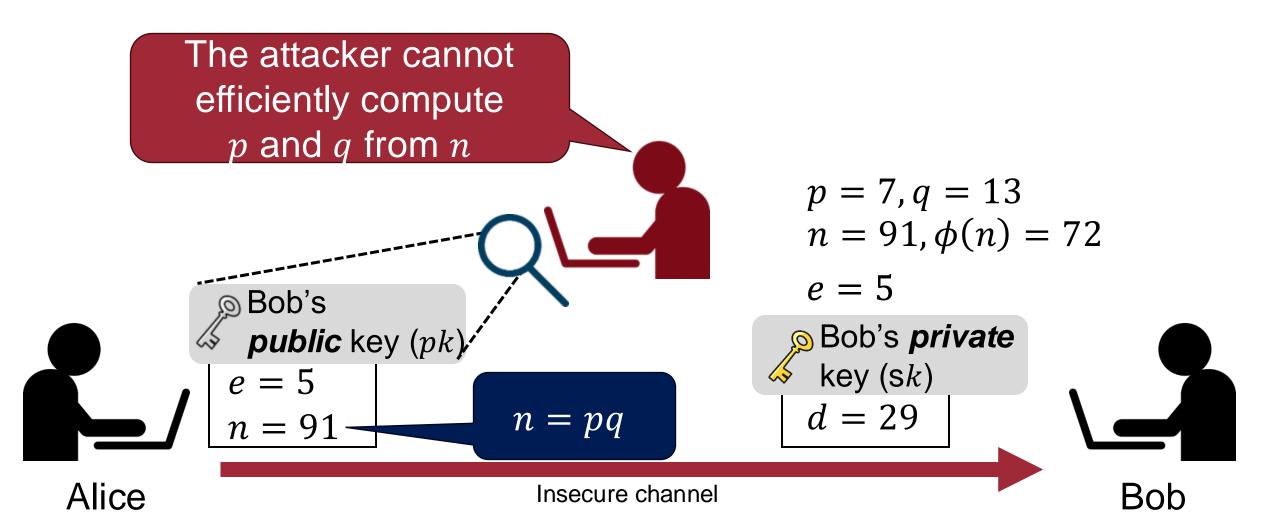




Security of the RSA Algorithm

$$c = E(m, pk) = m^e \mod n$$

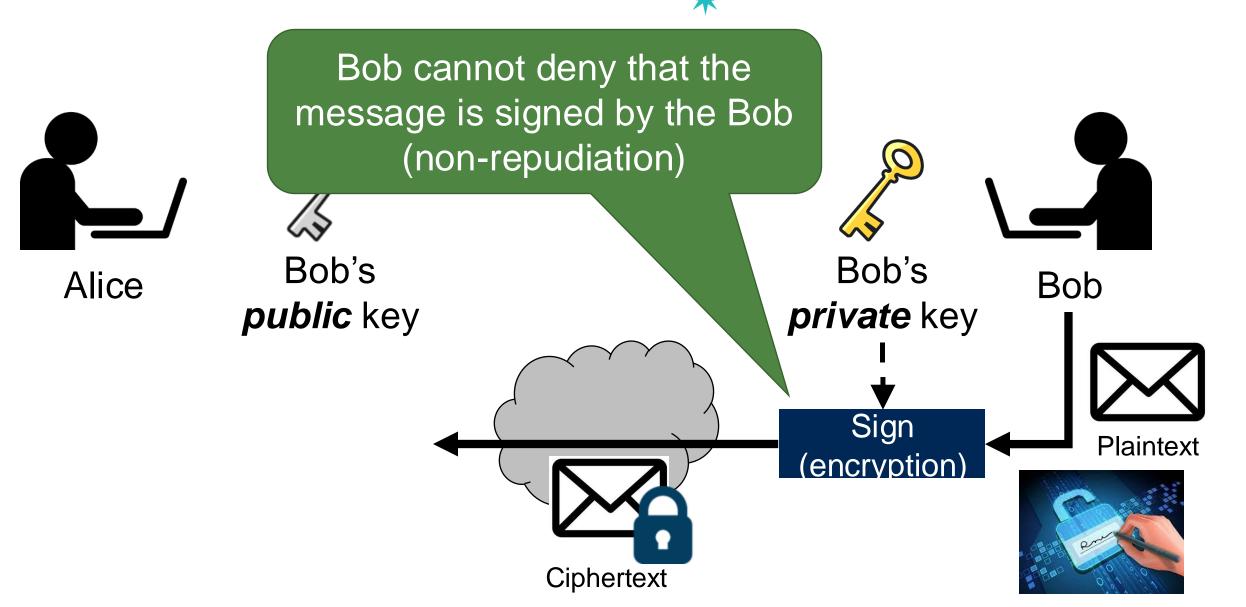
$$\left[m = D(c, sk) = c^d \mod n\right]$$

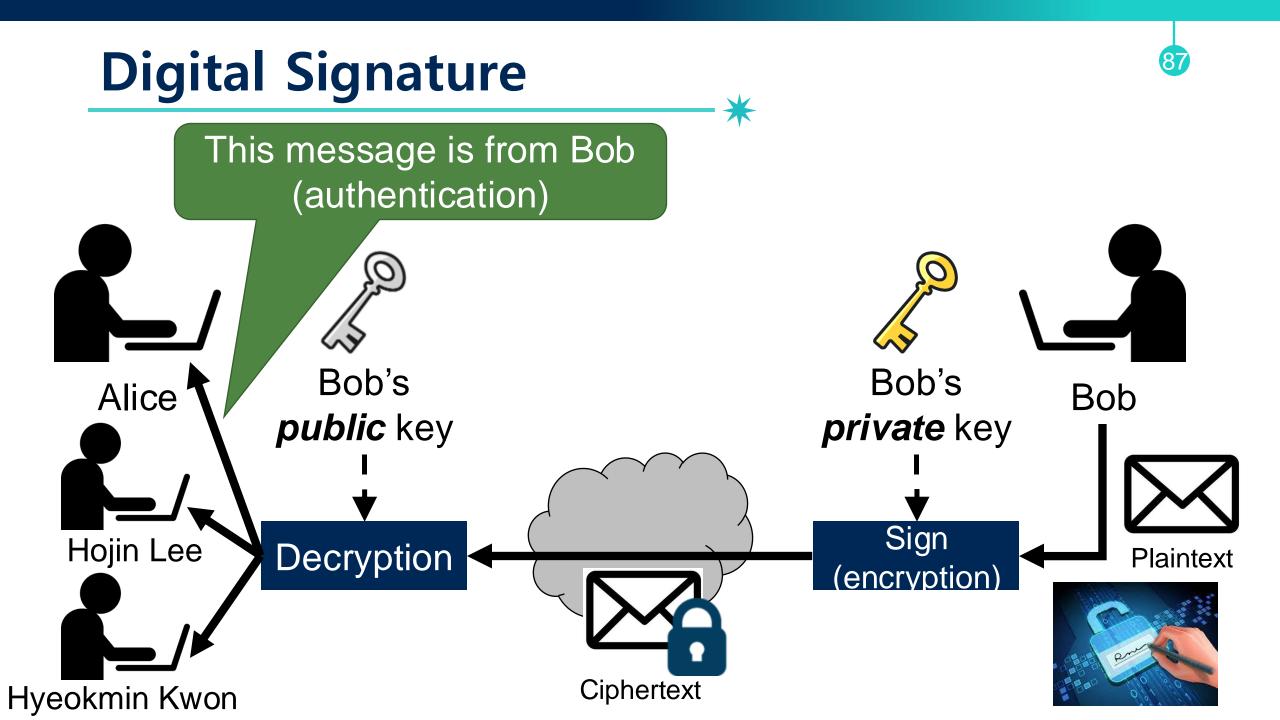


Comparison with Symmetric-Key Cryptograph

- Pros
 - No need to share a secret
 - Enable multiple senders to communicate privately with a single receiver
 - More applications: Digital sign

Digital Signature

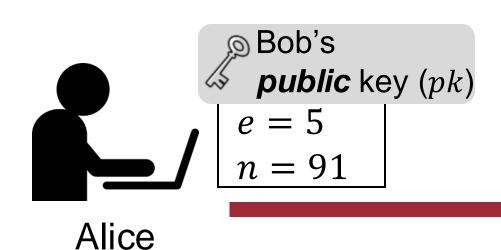




Digital Signature in Detail (1)

Publicize the verification message

m = 10



$$p = 7, q = 13$$

 $n = 91, \phi(n) = 72$
 $e = 5$

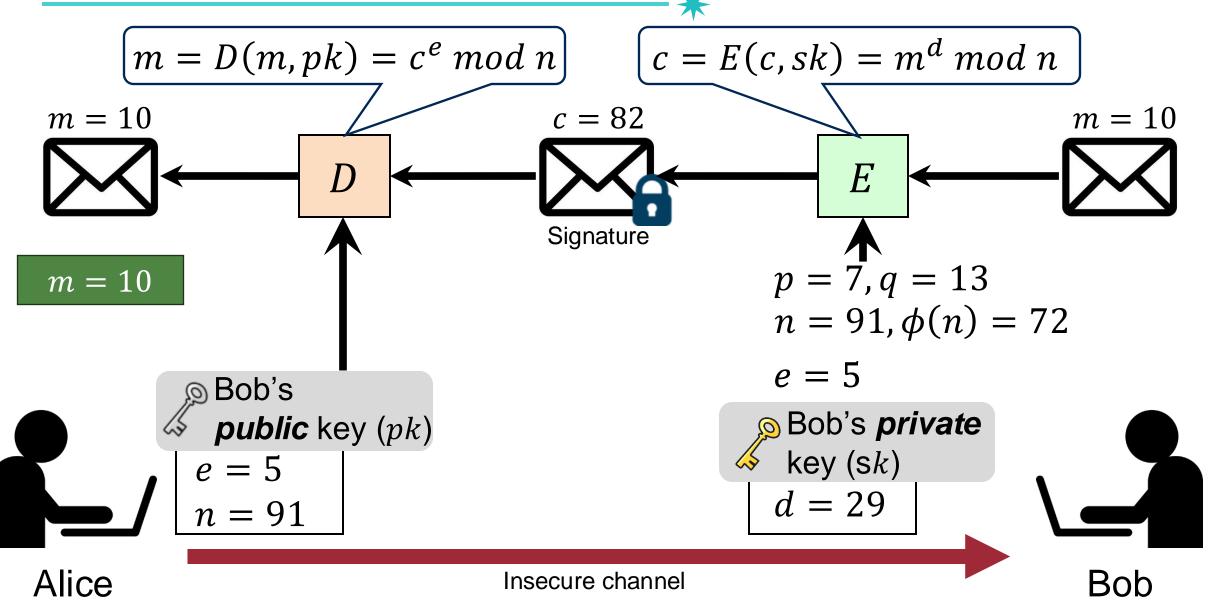
88

Bob

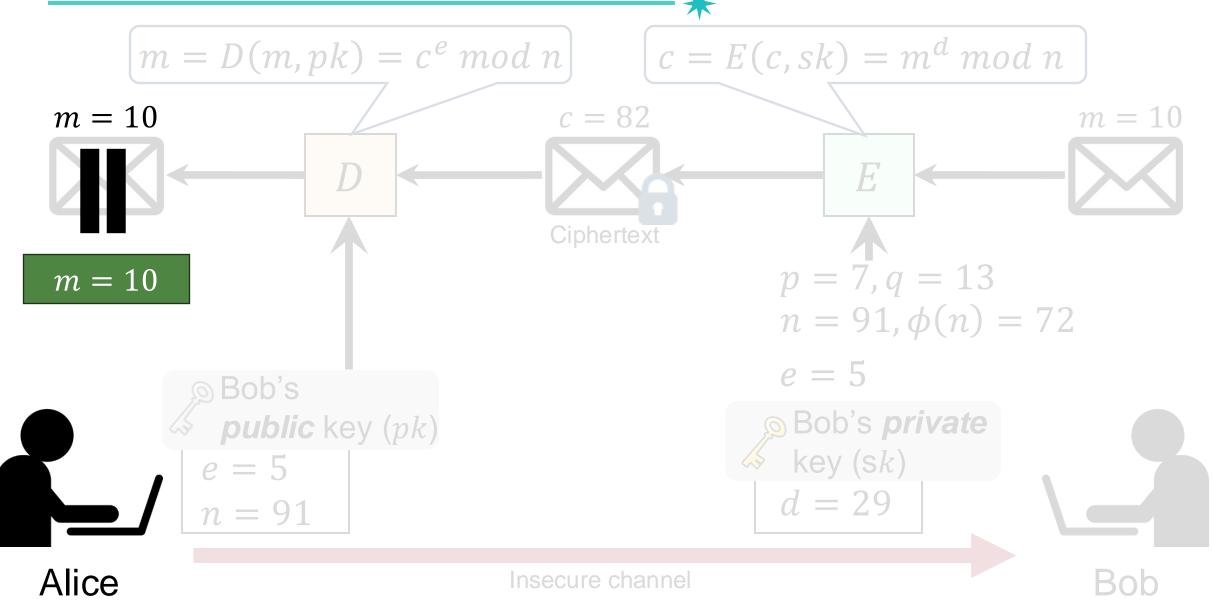
Bob's *private*key (sk)
d = 29

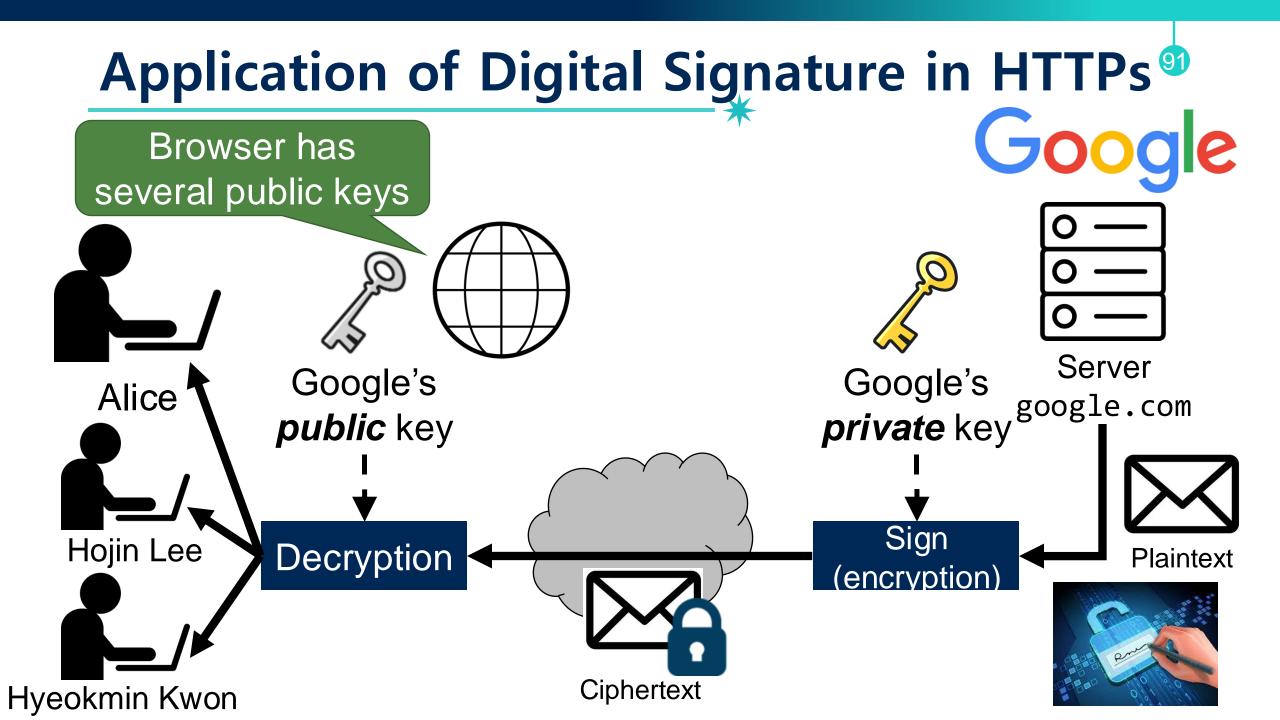
Insecure channel

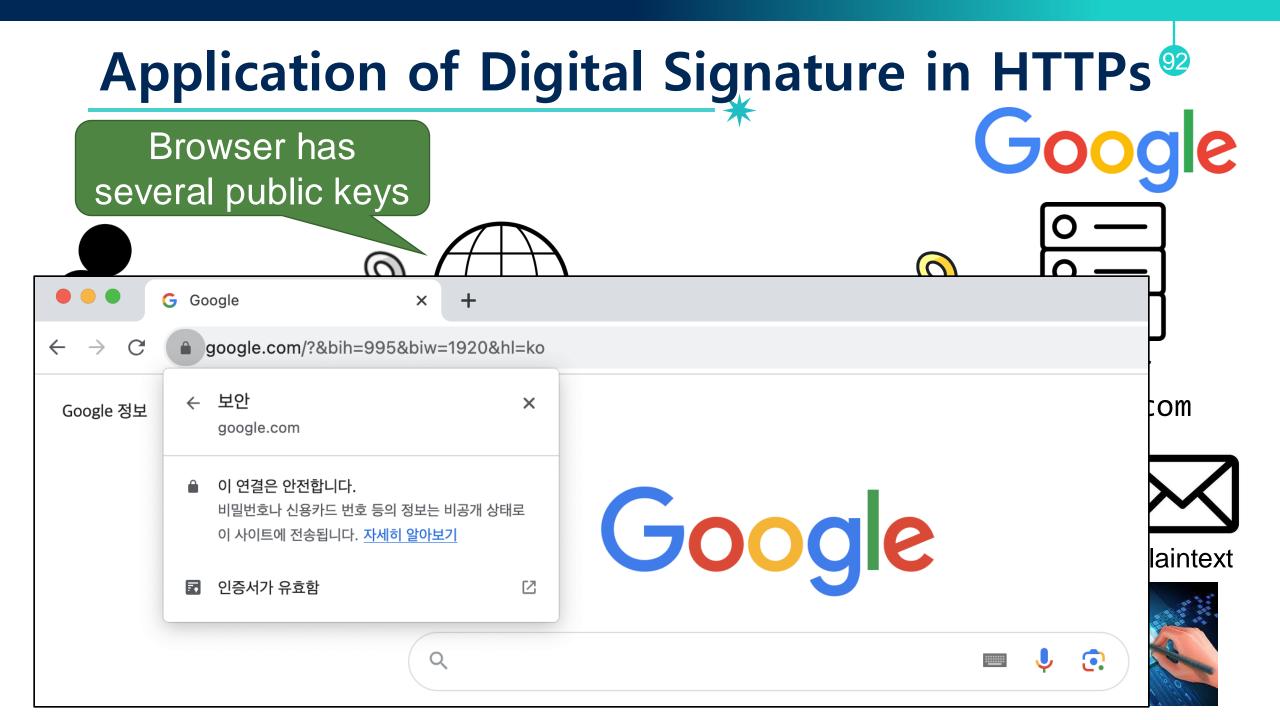
Digital Signature in Detail (2)



Digital Signature in Detail (3)





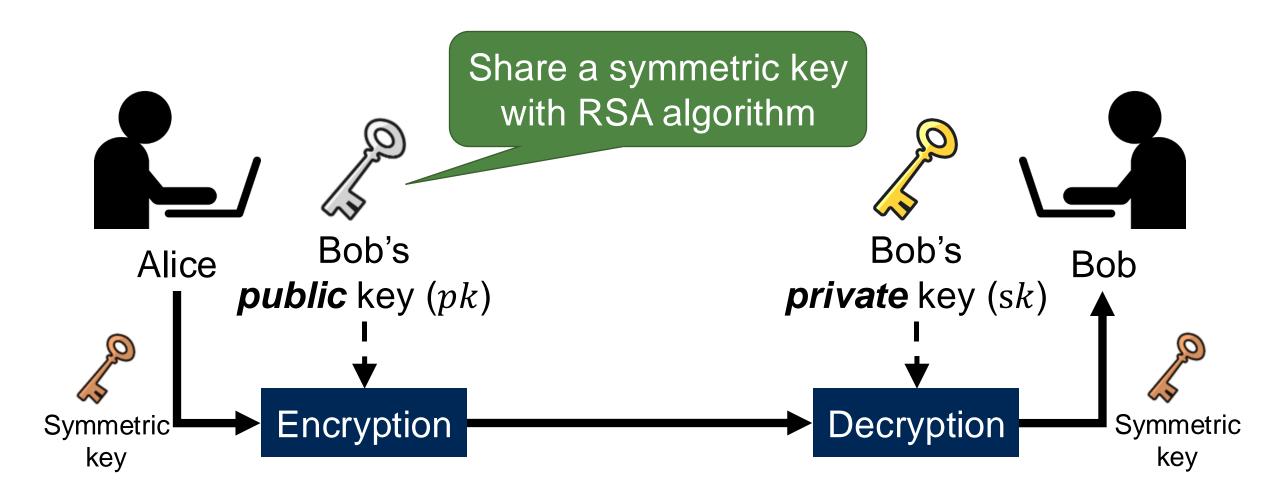


Comparison with Symmetric-Key Cryptograph

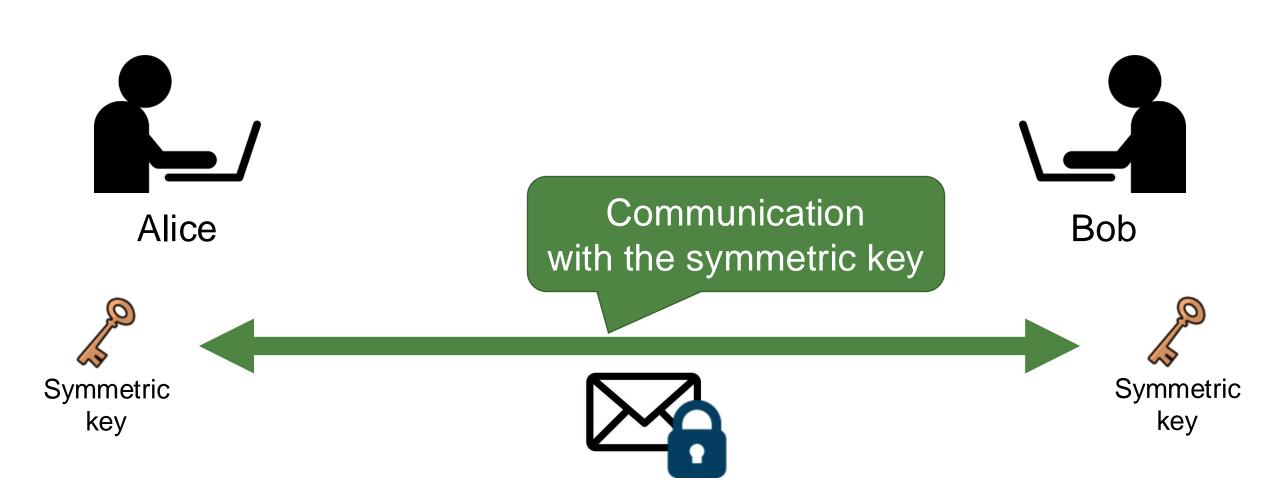
- Pros
 - No need to share a secret
 - Enable multiple senders to communicate privately with a single receiver
 - More applications: Digital sign

- Cons
 - Slower in general: due to the larger key
 - Roughly 2-3 orders of magnitude slower

In Practice: Combination of Two Schemes⁹⁹



In Practice: Combination of Two Schemes[®]



- Public-key revolution: solve key distribution and maintenance problem
 - Diffie-Hellman key exchange
 - Public-key encryption
 - Digital signature

 (Next lecture) Public key infrastructure, hash, MAC, and homomorphic encryption

