TTTTTTTTTTTTTTTTTTTTTT
nnnnnnnnnnnnnnnnnnnn

CSE467. Computer Security

6. Asymmetric-key Encryption

Seongil Wi

Department of Computer Science and Engineering

I
Notification: Homework #1

* Programming assignment
* Due: April 4 (Friday), 11:59 PM

* Implementing encryption, decryption, signing program for the
RSA cryptosystem

 Late submission will be assessed a penalty of 10% per day

Notification: Quiz #1

 Date: 3/31 (Mon.), Class time

H

* Scope
— Everything learned in Cryptography!

* T/F problems
« Computation problems

-
Notification: ParticipatiogE Points

* If you asked a gquestion during class, please let me know your
name and student ID

Notification: Hack Class1£1

* Find unknown security issues on Class101 websites!

* Instruction: https://bounty.class101.net/
— Foreigners should use a translator

* Activity period: 03/03 ~ 06/18

« DO NOT try anything illegal!

https://bounty.class101.net/

Hack Class101: Reported BL;‘gs (Anonymized) z

» Cross-Site Scripting (XSS) attacks
» Cross-Stie Request Forgery (CSRF) attacks
 Leak of the decryption key for paid video contents

ee M Gmail @ YouTube @ XI= © Maps

class101.net Lj2:

Your colleagues have already reported
many vulnerabilities. | recommend
getting involved in this activity as
soon as possible ©

Recap: Symmetric-key Encryption

« Symmetric: the encryption and decryption keys are the same

s
4 v

p c=E(p k) p =D(c k)
—> & D> 0 >
L_/ % Ciphertext % _

Alice Insecure channel Bob

Recap: Practical Use of Block Cipher

@ Plaintext Block #1 | Plaintext Block #2 Plaintext Block #P
- 7> 1 X
/
| \
}/ | 4 v
Plaintext Block #1 Plaintext Block #2 Plaintext Block #P

{

k-bit ke;Z{r@ —_—

{

E] S —{E

{

{

Cipher. Block #1

Cipher. Block #2

\
\

\
<

|
|

\
X

LE

{

{

Cipher. Block # P

I
I

I
L

Plaintext Block #1

Plaintext Block #2

Plaintext Block #P

Recap: Problems for the £xample g

* [dentical plaintext blocks — identical ciphertext blocks

Ciphertext of) Clphertex

Plaintext the Naive block cipher we want!

How to generate different ciphertexts

for the same plaintext?

Recap: Block Cipher Modes of Operation

* Determine how to repeatedly apply a single-block operation
to a sequence of blocks

* Different modes of operations

— ECB: Electronic Code Book (The naive one we've just discussed)

— CBC: Cipher Block Chaining

— CFB: Cipher FeedBack

— OFB: Output FeedBack

- CTR: CounTeR mode

Shell Command

$ openssl enc -aes-128-

cfb

Block cipher mode

-e -in plain.bin -out cipher.bin -K

Recap: Cipher Block Chaining

Inttialization vector

L=

Initialization vector

Vi

O | g 77 (€D =

P, P,
E f—» E
= !
C, C,
C, C,
— I
o] |£—D
¥ v
P, P,

T (DT =D

Recap: Symmetric-key Er;‘fryption

« Symmetric: the encryption and decryption keys are the same

How to share a secret
(e.g., AES key) over

an insecure channel?

kP —

p V. c=Epl ¥

‘ Igl—) E —)M—) D
_/ Plaintext

Ciphertext

A|ice Insecure channel

Motivation of the Diffie-Hellman Key Exchangg

¥

« Symmetric: the encryption and decryption keys are the same

Diffie-Hellman key

exchange!

lz(@ﬁlf
. vV c=Epk V¥
_ DRl ol

Ciphertext

A|ice Insecure channel

Diffie-Hellman key exchange

Core Idea: One-way Function £

¥

« Easy in one direction, but hard in the reverse direction
- f is easy to compute, but f~1 is difficult to compute

Core Idea: One-way Function ;

¥

« Easy in one direction, but hard in the reverse direction
— f is easy to compute, but f~1 is difficult to compute

Easy to calculate 91

7x13 o 91

Given 91, it is very difficult

to compute 7 and 13

Integer Factorization Problem

Core Idea: One-way Function ;

¥

« Easy in one direction, but hard in the reverse direction
- f is easy to compute, but f~1 is difficult to compute

Given g,p, x, It IS

easy to calculate y

>

g* mod p Y

Core Idea: One-way Func*:cion

« Easy in one direction, but hard in the reverse direction
- f is easy to compute, but f~1 is difficult to compute

g =3
p=>5
X =2

>

g* mod p y =7

Core Idea: One-way Function ;

¥

« Easy in one direction, but hard in the reverse direction
- f is easy to compute, but f~1 is difficult to compute
g=3 Given g,p, x, It IS
p=>5 easy to calculate y

X =2
g*modp =

y=4

Core Idea: One-way Function ;

¥

« Easy in one direction, but hard in the reverse direction
- f is easy to compute, but f~1 is difficult to compute

Given g,p, x, It IS
easy to calculate y

9* mod p ‘e

Given g,p,y, itis very

difficult to compute x

Core Idea: One-way Function ;

¥

« Easy in one direction, but hard in the reverse direction
- f is easy to compute, but f~1 is difficult to compute

g =3
p=>5
x =7

G MOA D e YV = 4

Given g,p,y, itis very

difficult to compute x

Discrete Logarithm Problem

Core Idea: One-way Function ;

¥

« Easy in one direction, but hard in the reverse direction
- f is easy to compute, but f~1 is difficult to compute

g =3

There Is no efficient algorithm known for computing
discrete logarithms in general

Diffie-Hellman Key Exchg&nge (1)

l

g MOAD o Y

Pick two value:
Large prime p and
Integer g

Insecure channel Bob

Diffie-Hellman Key Exchg&nge (2)

l

g MOAD o Y

Publicly share
p and g

p=23,9g=9 p=23,9g=9
-/ ey _-i

Alice Insecure channel Bob

Diffie-Hellman Key Exchg&nge (2)

l

g~ MO D

Publicly share
p and g

Insecure channel

Diffie-Hellman Key Exchg&nge (3)

Generate Generate

secret value a

secret value b

Insecure channel

Diffie-Hellman Key Exchg&nge (4)

g Mmod P

a=4

p=23,9g=9 _ (g _dZ?; 6
/4= (g"modp) =6 = (9" mod p) = 6y i

A||Ce Insecure channel

Diffie-Hellman Key Exchgknge (4)

Il

g* mod p y

p=23,9=9
iAz(g“modp)=6
a=4

p=23,9g=9 _ (g _dZ?; 6
/4= (g"modp) =6 = (9" mod p) = 6y i

A||Ce Insecure channel

Diffie-Hellman Key Exchg‘enge (4) ;

g Mod P Y

p=23,9=9
i A= (glmodp) =6

Given g,p,y, itis very
difficult to compute a

Discrete Logarithm Problem

Diffie-Hellman Key Exchg&nge (4)

l

g MOAD s Y

p=23,9=9
A= (g*modp) =6
q_ Send

B = g° modp
to Alice
p=23,9g=9 p=23,g=9
A:(gamodp):6 A=(gam0dp)=6
_/B=(gbm0dp):16 B = (g? mod p) = 16

Alice Insecure channel Bob

Diffie-Hellman Key Exchgknge (4)

X >
9 MOA D o Y
p=23,9=9
A= (g*modp)==6
q\ B = (g’ mod p) = 16
a=4 b=3
—239—9 p=23,9g=9
, —(g mod p) = 6 A= (g"modp) =6
B = (g°” mod p) = 16 B = (g° mod p) = 16
Alice Insecure channel

Bob

Diffie-Hellman Key Exchg&nge (5)

Symmetric key:

p=23,9g=09
_ ab A=(g"modp) =6
fK_g mod p \43=(g’%n0dp)=16

a=4 b=3
—239—9 p=23,g=9
_(g modp):6 =(m0dp)=6
— 3, B = (g? mod p) = 16 B = (g? mod p) = 16

A||Ce Insecure channel

Bob

Diffie-Hellman Key Exchange (5)

Symmetric key: p=23,9=9
— ab A=(g%modp) =6
LK =g modp _‘B=<gbmodp>=16

‘K = (B mod p) = (9%Pmod p)\ Theorem:
= (16* mod 23) = 92(@ ((X mod p)* mod p) = (X* mod p)
J
V — 4 b=3
=23,9=9 p=23,9=9
A= (g*modp) =6 A= (g*modp) =6
_/B=(gbm0dp):16 B = (g° mod p) = 16

Alice Insecure channel Bob

Diffie-Hellman Key Exchg&nge (5)

Symmetric key:

p=23,g=9
fK:gab modp \ iA=(gam0dp)=6

B = (g” mod p) = 16

~
K = (B*mod p) = (9*’mod p)| | K = (4” mod p) = (g*’mod p)
= (16" mod 23) = 9 /° = (6° mod 23) =9)

a=4 b=3
—239—9 p=23,9g=9
_(g modp):6 =(g m0dp)—6
_/B—(gbmodp):16 B = (g° mod p) = 16
Alice Insecure channel

Bob

The attacker cannot efficiently

compute (g*° mod p) &
without knowing a and b

A=(g"modp) =6
B = (g” mod p) = 16

K = (B*mod p) = (9*’mod p)| | K = (4°” mod p) = (g*’mod p)N

= (16" mod 23) = 9 /° = (6° mod 23) =9)
a=4 b=3
—239—9 p=23,9=9
= (g*modp) =6 A= (g*modp)==6
_/B—(gbmodp):16 B = (g° mod p) = 16

Alice Insecure channel Bob

Why should p be Prime?* ;
Symmetric key: Too simple key pattern
f}(— gab mod i g =2 that can be inferred
- 20 mod 11 = 1 RN - 20 mod 12 =1

e 21mod11=2 e 21mod12=2

e 2°modl1l1=4 e 2°mod12 =4
e 25mod11 =8 e 25mod12 =8
e 2*mod11 =5 e 2*mod12=4
e 2°mod 11 =10 e 2°mod12 =38
e 2°mod11=9 e 2°mod12 =4
e 2"mod11 =7 e 2"mod 12 =8
e 2%mod11 =3 e 28mod12 =4
e 2°mod11=6 e 2°mod12 =8

e 210mod11=1 e 210mod12 =14

Diffie-Hellman Key Exchgknge

2 Problems?
® |

()
K = (B*mod p) = (9*’mod p)| | K = (4” mod p) = (g*’mod p)
= (16" mod 23) = 9 /° = (6° mod 23) =9)

'S %

Alice Insecure channel Bob

Symmetric key:

Problem (1): Man-in-the;MiddIe Attack

A = (g“ mod p)

C = (gS\mod p)
Send Attacker’s
A to Bob \ Secret value
‘ 'Az(gamodp)—J \ i

Alice Insecure channel Bob

Problem (1): Man-in-the;‘eMiddIe Attack ;

A = (g mod p)
C = (g° mod p)

Message from the
attacker that appears

to be from Bob

Insecure channel

Problem (1): Man-in-the;MiddIe Attack

A= (g*modp)
C = (g° mod p)

1 fl(lzgacmodp
f[(lzgacmodp _

‘=/E‘E§?$33§§«J \3‘

Alice Insecure channel Bob

Problem (1): Man-in-the;MiddIe Attack

B = (g” mod p)
C = (g° mod p)

fKZ—gbcmodpz fIﬂ:gaCmodp
fm: “C mod \— f)xz= b€ mod
g ~modp g’c modp

L—B = (g” mod p)
L—/ L—V C=(g°mo p)_4
Bob

A|ice Insecure channel

Problem (1): Man-in-the;MiddIe Attack

sz = g% mod p fl{l = g% mod p
fm—g modp& \—4\ j@K2=gbcmodp
W ~h

Alice Insecure channel Bob

Problem (2): Maintenanc;: Problems

« Recap: the same key shared between two parties
 What happens if there are many users?

-1 USers: (721) =nn-—1)/2 [

How to solve this

— Example: 100 users — 4,950 keys issye?

« Key distribution and maintenance problem

8 ® .
-

?
o
-

Asymmetric-key Cryptography

Asymmetric-key Cryptog;;aphy

« Each party has two distinct keys: public key and private key
—Also known as public-key algorithm

* Invented in 1976 by Diffie and Hellman (ACM Turing Award
2015)

Asymmetric-key Cryptog;;aphy

* pk: public key, widely disseminated, used for encryption
 sk: private key kept secretly, used for decryption
 More robust against man-in-the-middle attack

* Good maintenance: n users — 2n keys

YV YV
whkusk) B Rk, sky)
- | -

| >< |
(53,&‘/{)1;) Jol (§4,§4>
|

- [
w »

Asymmetric-key Cryptog;;aphy

* pk: public key, widely disseminated, used for encryption
 sk: private key kept secretly, used for decryption

2 == 20

public key (pk) private key (sk)

Asymmetric-key Cryptog;;aphy g

* pk: public key, widely disseminated, used for encryption
 sk: private key kept secretly, used for decryption

g/ 2\

/" Bob’s Bob’s
publlc key (pk) private key (sk)

Alice

Only Bob should

Publicly available have this key

Asymmetric-key Cryptography

* pk: public key, widely disseminated, used for encryption
 sk: private key kept secretly, used for decryption

D

Alice Bob’s Bob’s
public key (pk) private key (sk)

Plaintext Decryption

Ciphertext

RSA Cryptosystem

RSA Cryptosystem

* Invented by Rivest, Shamir, and Adleman (MIT) in 1977
— ACM Turing award in 2002

* Rely on the practical difficulty of factoring the product of two
large prime numbers
— Security based on Prime Factorization Problem

Prime Factorization Probal‘eem ;

Given large prime p and
q, It Is easy to calculate n

Given n, it is very difficult
to compute p and g

RSA Algorithm (1): Key (ieneration

Select two large
primes p and g

s .
Public place

(
|
|
|
|
|

RSA Algorithm (1): Key (ieneration

Compute n = pg and

p(n) =(p—1)(q—1)

P
Public place
p=7,q=13

[\
: I
| : n=91¢n) =72
| |
: I

Insecure channel

RSA Algorithm (1): Key (ieneration

Choose e s.t.
¢+ 1<e< ¢(n) and

»+ gcd(p(n),e) =1

s .
Public place

p=7,q=13
n=91¢(n) =72

(
I
I
: e=>5
I
I

Insecure channel

RSA Algorithm (1): Key (ieneration

[How to find d?

— Extended Euclidean Algorithm! Choose d s.t.
¢« 1<d< ¢(n)and

 (edmod ¢p(n)) =1

s .
Public place

(
|
|
|
|
|

Euclidean Algorithm .

Goal: Finding Greatest Common Divisor (GCD)

Fact 1: gcd(a,0) = a
Fact 2: gcd(a, b) =gcd(b,r), where r is the
remainder of dividing a by b (a > b)

gcd(72,5)

Euclidean Algorithm .

Goal: Finding Greatest Common Divisor (GCD)

Fact 1: gcd(a,0) = a
Fact 2: gcd(a, b) =gcd(b,r), where r is the
remainder of dividing a by b (a > b)

gcd(72,5) 72=(5x%14)+2

Euclidean Algorithm .

Goal: Finding Greatest Common Divisor (GCD)

Fact 1: gcd(a,0) = a
Fact 2: gcd(a, b) =gcd(b,r), where r is the
remainder of dividing a by b (a > b)

%

Example b

gcd(72,5) 72=(5x14)+
gcc‘_(s',/ 5= (2%2)+1

Euclidean Algorithm .

Goal: Finding Greatest Common Divisor (GCD)

Fact 1: gcd(a,0) = a
Fact 2: gcd(a, b) =gcd(b,r), where r is the
remainder of dividing a by b (a > b)

gcd(72,5) 72=(5%14)+2
gcé.(Sf) S=(2x2)+1

gcd(2,1) 2=(@2=*1)+0

Euclidean Algorithm .

Goal: Finding Greatest Common Divisor (GCD)

Fact 1: gcd(a,0) = a
Fact 2: gcd(a, b) =gcd(b,r), where r is the
remainder of dividing a by b (a > b)

gcd(72,5) 72=(5x%14)+2
gcd(5, 2) 5=012%*2)+1
gcd(Zyl) 2=(2+1)+0

gcd(1, 09~

Euclidean Algorithm .

Goal: Finding Greatest Common Divisor (GCD)

Fact 1: gcd(a,0) = a
Fact 2: gcd(a, b) =gcd(b,r), where r is the
remainder of dividing a by b (a > b)

gcd(72,5) 72=(5x%14)+2
gcd(5, 2) 5=012%*2)+1

gcd(2,1) 2=(02%1)+0
gcd(1,0) =1

Extended Euclidean Algoal‘;ithm ;

* Goal: Computing integers x and y s.t.
ax + by = gcd(a,b)

Extended Euclidean Algorithm

* Goal: Computing integers x and y s.t.
ax + by = gcd(a,b)

Choose e s.t.
e 1<e< ¢(n)and

» gcd(gp(n),e) =1

Choose d s.t.
e 1<d<¢(n)and
 (edmod ¢p(n)) =1

Extended Euclidean Algorithm

* Goal: Computing integers x and y s.t.
ax + by = gcd(a,b)

ed + ¢ (n)(—k) = ged(p(n), e) = 1

Choose e s.t.
e 1<e< ¢(n)and

» gcd(gp(n),e) =1

Choose d s.t.
e 1<d<¢(n)and
 (edmod ¢p(n)) =1

Extended Euclidean Algo;‘;ithm

* Goal: Computing integers x and y s.t.

We can find ax + by = gcd(a,b)
the value d!

ol + ¢ (n)(—k) = ged(p(n), e) = 1

Choose e s.t.
e 1<e< ¢(n)and

» gcd(gp(n),e) =1

Choose d s.t.
e 1<d<¢(n)and
 (edmod ¢p(n)) =1

Extended Euclidean Algoal‘;ithm g

* Goal: Computing integers x and y s.t.
ax + by = gcd(a,b)
ed + ¢ (n)(—k) = ged(p(n),e) =1
(e =5,¢6(n) =72)

gcd(72,5) 72=(5%14)+2
gcd(5, 2) 5=012%*2)+1

gcd(2,1) 2=(02%1)+0
gcd(1,0) =1

Extended Euclidean Algoal‘;ithm g

* Goal: Computing integers x and y s.t.
ax + by = gcd(a,b)
ed + ¢ (n)(—k) = ged(p(n),e) =1
(e =5,¢6(n) =72)

gcd(72,5) 72=(5%14)+2
gcd(5, 2) 5=02x*2)+1 = 5—-(2x2)=1

gcd(2,1) 2=2*1)+0 B
gcd(1,0) =1

Extended Euclidean Algoal‘;ithm ;

* Goal: Computing integers x and y s.t.
ax + by = gcd(a,b)

ed + ¢(n)(—k) = ged(@(n),e) =1
(e =5,¢(n) = 72)

gcd(72,5) 72=(5%14)+2
gcd(5, 2) 5=02*2)+1 = 5—-(2x2)=1

gcd(2,1) 2=(02%1)+0
gcd(1,0) =1

Extended Euclidean Algoal‘;ithm ;

* Goal: Computing integers x and y s.t.
ax + by = gcd(a,b)
ed + ¢ (n)(—k) = ged(p(n),e) =1
(e =5,¢6(n) =72)

ecd(72,5) 72=(5+14)+2 mp 5 ((72—5%14)%2) =1
gcd(5, 2) 5=02*2)+1 = 5—-(2x2)=1

gcd(2,1) 2=(02%1)+0
gcd(1,0) =1

Extended Euclidean Algoal‘;ithm ;

* Goal: Computing integers x and y s.t.
ax + by = gcd(a,b)
ed + ¢ (n)(—k) = ged(p(n),e) =1
(e =5,¢6(n) =72)

gcd(72,5) 72=(5%14)+2 m 5x29 +72(-2) =1

gcd(5, 2) 5=02%2)+1 = 5—(2x2)

gcd(2,1) 2=(02%1)+0
gcd(1,0) =1

Extended Euclidean Algorithm: Logic FIo}

ry—a, ry<b; (Initialization)

while (r, > 0)

q—rylry;
rooe—ry—qg X,

Iy <1y, Py« T,

j
ged (a, b) «— 1y

ry < a; ry «— b;
51 1; 55« 0; (Imtialization)
< 0; 1 1;

while (r, = 0)

{
g <1/ ry;

Fer—qgxnr, :
(Updating r’s)

Py €Ty Iy« r;

§— 851 —g X5, :
(Updating s°s)

S €835 SH 5]

Te—l—qxly .
(Updating 7’s)

hebhL; L« 1

b

ged (a, b) «—ry) s—s; 1+

Euclidean Algorithm

Extended Euclidean Algorithm

RSA Algorithm (1): Key (ieneration

[How to find d?

—» Extended Euclidean Algorithm! Choose d s.t
¢« 1<d< ¢(n)and

 (edmod ¢p(n)) =1

s .
Public place

(
|
|
|
|
|

RSA Algorithm (1): Key (ieneration

Public key: (e, n)

s .
Public place

Bob's :
public key (pk) |
e =5 [
n =91 |

(
|
|
|
|
|

) Insecure channel

RSA Algorithm (1): Key (ieneration

Public key: (e, n)

o ———— - - p=7,q=13
Public place n=91¢n) =72
: p=%,q=13

Bob’s

public key (pk) : ﬁﬁ%%mg = 72
e=5 | f;%’SSk)

n =91 I =29 _

P Insecure channel Bob

(
|
|
|
|
|

RSA Algorithm (1): Key Generation

Public key: (e, n)

p=7,q=13
n=91¢n) =72
Bob's Private key: d e =5

public key (pk) | Bob’s private
e =15 : key (sk)
n =091 : d =29 \

P Insecure channel Bob

s .
Public place

(
|
|
|
|
|

RSA Algorithm (2): Encryption and Decryption

g/

Alice

Bob’s
public key (pk)
e =25

n =91

Ciphertext

Insecure channel

c—E(mpk)yod_n] m = D(csk)—c modn]
m=1 m = 10

_)@

=13

n=91¢n) =72

D
p=174
e =5
key (sk)
d =29

Bob's private 1

Bob

RSA Algorithm (2): Encryption and Decryption

c = E(m, pk)

m = 10

@—)

g/

Alice

Bob’s

public key (pk)
e=>5
n =91

Ciphertext

Insecure channel

D

yod_n] m = D(csk)—c modn]
m =10

_)@

A

p=17q

=13

n=91¢n) =72

e=>5
key (sk)
d =29

Bob's private 1

Bob

Correctness of the RSA Alg;)erithm

[c = E(m,pk) = m® mod n] [m = D(c, sk) = ¢ mod n]

Theorem:

Correctness: m = (m® mod n)% mod n (X mod p)* mod p) = (X* mod p)

= m¢? mod n

Correctness of the RSA Algorithm

[c = E(m,pk) = m® mod n] [m = D(c, sk) = ¢®* mod n]

Theorem:
Correctness: m = (m® mod n)% mod n (X mod p)* mod p) = (X* mod p)

We choose d s.t. E m k¢ mod n

(ed mod p(n)) =1

Correctness of the RSA Algorithm

[c = E(m,pk) = m® mod n] [m = D(c, sk) = ¢®* mod n]

Theorem:
Correctness: m = (m® mod n)% mod n (X mod p)* mod p) = (X* mod p)
= mod n
1+k-¢p(n)
We choose d s.t. m ¢ m,?d n
(ed mod $p(n)) = 1 m - (m®™)" mod n
— m mod n Euler’s Theorem:
=m (X?™ mod n) = 1 where

gcd(X,n) =1

Also, refer to Fermat's little theorem ©

Security of the RSA Algoritlgkm

[c = E(m,pk) = m® mod n] [m = D(c, sk) = ¢®* mod n]

The attacker cannot
efficiently compute
y and g from n

p=7,q=13
n=91¢n) =72

e =25
public key (pk)// Bob’s private

e=>5 key (sk)
n =91

d = 29 _

Alice Insecure channel Bob

Comparison with Symmetrii-Key Cryptography
* Pros

— NO need to share a secret

— Enable multiple senders to communicate privately with a single
receiver

— More applications: Digital sign

Digital Signature g

¥

Bob cannot deny that the

message Is signed by the Bob
(non-repudiation)

public key private key

ob
I l
S;
|gn_ Plaintext
encryption

Ciphertext

Digital Signature ;

This message is from Bob
(authentication)

Bob's B
private key

|
encryption

_ ob
public key

Plaintext

Hojin Lee Decryption

-

Hyeokmin Kwon Ciphertext

Digital Signature in Detajel (1)

Publicize the
verification message

p=7,q=13

n=91¢n) =72
Bob’s e =5 |
public key (pk) Bob’s private
e=>5 key (sk)
n =091 d =29

A|ice Insecure channel

Digital Signature in Detail (2)

m D(m, pk)—ﬂod_n] C —E(c Sk) = m¢ modn]
m =10 m =10
M‘— e —D

Signhature
= 7 q=13
n =91,¢p(n) =72
Bob’s e =5

public key (pk) Bob’s private
e =15 key (sk)
n =091 d =29 \

Alice Insecure channel Bob

Digital Signature in Deta;i‘el (3)

Alice

Application of Digital Sig‘enature in HTTPs

Browser has Go gle

several public keys

Google’s Google’s
public key private key

|
encryption

google.com

<]

Plaintext

Hojin Lee Decryption

-

Hyeokmin Kwon Ciphertext

Application of Digital Sig‘enature in HTTPS;
Browser has Go gle

several public keys

(N A —

G Google X +
& C [@& google.com/?&bih=995&biw=1920&hl=ko
ot X
Google & < = X LOMm
google.com
@ O] ¢iAS otEEL|CL

HIZHSLE MEFIE HS S| YE= HISH JEi=

ol AtOIE0] FAEILICE. XAI5] o] G o g I e

& BNt REE 2

Comparison with Symmetrii-Key Cryptography
* Pros

— NO need to share a secret

— Enable multiple senders to communicate privately with a single
receiver

— More applications: Digital sign

e COns

— Slower in general: due to the larger key
» Roughly 2-3 orders of magnitude slower

In Practice: Combination*of Two Schemes;

Share a symmetric key

‘ ; with RSA algorithm

Bob's
public key (pk) private key (sk)

| f
Decryption Symmetric
key

Alice

Symmetnc
key

In Practice: Combination*of Two Schemes;

-

Alice

Symmetric
key

Communication
with the symmetric key

Symmetric
key

-
Summary

 Public-key revolution: solve key distribution and maintenance
problem
- Diffie-Hellman key exchange
— Public-key encryption
— Digital signature

* (Next lecture) Public key infrastructure, hash, MAC, and
homomorphic encryption

Question?

	Slide 1
	Slide 2: Notification: Homework #1
	Slide 3: Notification: Quiz #1
	Slide 4: Notification: Participation Points
	Slide 5: Notification: Hack Class101
	Slide 6: Hack Class101: Reported Bugs (Anonymized)
	Slide 7: Your colleagues have already reported many vulnerabilities. I recommend getting involved in this activity as soon as possible 
	Slide 8: Recap: Symmetric-key Encryption
	Slide 9: Recap: Practical Use of Block Cipher
	Slide 10: Recap: Problems for the Example
	Slide 11: Recap: Block Cipher Modes of Operation
	Slide 12: Recap: Cipher Block Chaining
	Slide 13: Recap: Symmetric-key Encryption
	Slide 14: Motivation of the Diffie-Hellman Key Exchange
	Slide 15: Diffie-Hellman key exchange
	Slide 16: Core Idea: One-way Function
	Slide 17: Core Idea: One-way Function
	Slide 18: Core Idea: One-way Function
	Slide 19: Core Idea: One-way Function
	Slide 20: Core Idea: One-way Function
	Slide 21: Core Idea: One-way Function
	Slide 22: Core Idea: One-way Function
	Slide 23: Core Idea: One-way Function
	Slide 24: Diffie-Hellman Key Exchange (1)
	Slide 25: Diffie-Hellman Key Exchange (2)
	Slide 26: Diffie-Hellman Key Exchange (2)
	Slide 27: Diffie-Hellman Key Exchange (3)
	Slide 28: Diffie-Hellman Key Exchange (4)
	Slide 29: Diffie-Hellman Key Exchange (4)
	Slide 30: Diffie-Hellman Key Exchange (4)
	Slide 31: Diffie-Hellman Key Exchange (4)
	Slide 32: Diffie-Hellman Key Exchange (4)
	Slide 33: Diffie-Hellman Key Exchange (5)
	Slide 34: Diffie-Hellman Key Exchange (5)
	Slide 35: Diffie-Hellman Key Exchange (5)
	Slide 36: Diffie-Hellman Key Exchange (5)
	Slide 37: Why should p be Prime?
	Slide 38: Diffie-Hellman Key Exchange
	Slide 39: Problem (1): Man-in-the-Middle Attack
	Slide 40: Problem (1): Man-in-the-Middle Attack
	Slide 41: Problem (1): Man-in-the-Middle Attack
	Slide 42: Problem (1): Man-in-the-Middle Attack
	Slide 43: Problem (1): Man-in-the-Middle Attack
	Slide 44: Problem (2): Maintenance Problems
	Slide 45: Asymmetric-key Cryptography
	Slide 46: Asymmetric-key Cryptography
	Slide 47: Asymmetric-key Cryptography
	Slide 48: Asymmetric-key Cryptography
	Slide 49: Asymmetric-key Cryptography
	Slide 50: Asymmetric-key Cryptography
	Slide 51: RSA Cryptosystem
	Slide 52: RSA Cryptosystem
	Slide 53: Prime Factorization Problem
	Slide 54: RSA Algorithm (1): Key Generation
	Slide 55: RSA Algorithm (1): Key Generation
	Slide 56: RSA Algorithm (1): Key Generation
	Slide 57: RSA Algorithm (1): Key Generation
	Slide 58: Euclidean Algorithm
	Slide 59: Euclidean Algorithm
	Slide 60: Euclidean Algorithm
	Slide 61: Euclidean Algorithm
	Slide 62: Euclidean Algorithm
	Slide 63: Euclidean Algorithm
	Slide 64: Extended Euclidean Algorithm
	Slide 65: Extended Euclidean Algorithm
	Slide 66: Extended Euclidean Algorithm
	Slide 67: Extended Euclidean Algorithm
	Slide 68: Extended Euclidean Algorithm
	Slide 69: Extended Euclidean Algorithm
	Slide 70: Extended Euclidean Algorithm
	Slide 71: Extended Euclidean Algorithm
	Slide 72: Extended Euclidean Algorithm
	Slide 73: Extended Euclidean Algorithm: Logic Flow
	Slide 75: RSA Algorithm (1): Key Generation
	Slide 76: RSA Algorithm (1): Key Generation
	Slide 77: RSA Algorithm (1): Key Generation
	Slide 78: RSA Algorithm (1): Key Generation
	Slide 79: RSA Algorithm (2): Encryption and Decryption
	Slide 80: RSA Algorithm (2): Encryption and Decryption
	Slide 81: Correctness of the RSA Algorithm
	Slide 82: Correctness of the RSA Algorithm
	Slide 83: Correctness of the RSA Algorithm
	Slide 84: Security of the RSA Algorithm
	Slide 85: Comparison with Symmetric-Key Cryptography
	Slide 86: Digital Signature
	Slide 87: Digital Signature
	Slide 88: Digital Signature in Detail (1)
	Slide 89: Digital Signature in Detail (2)
	Slide 90: Digital Signature in Detail (3)
	Slide 91: Application of Digital Signature in HTTPs
	Slide 92: Application of Digital Signature in HTTPs
	Slide 93: Comparison with Symmetric-Key Cryptography
	Slide 94: In Practice: Combination of Two Schemes
	Slide 95: In Practice: Combination of Two Schemes
	Slide 96: Summary
	Slide 97: Question?

