
7. Public-Key Infrastructure, Integrity

Seongil Wi

Department of Computer Science and Engineering

CSE467: Computer Security

Notification: Homework #1

• Programming assignment

• Due: April 4 (Friday), 11:59 PM

• Implementing encryption, decryption, signing program for the
RSA cryptosystem

• Late submission will be assessed a penalty of 10% per day

2

Notification: Quiz #1

• Date: 3/31 (Mon.), Class time
− Bring your pen!

• Scope
− Everything we've learned in Cryptography, including today's material

• T/F problems

• Computation problems

3

Recap: Symmetric-key Encryption

• Symmetric: the encryption and decryption keys are the same

4

BobAlice

𝑝

𝐸

𝑝 = 𝐷(𝑐, 𝑘)

𝐷

𝑘

𝑐 = 𝐸(𝑝, 𝑘)

CiphertextPlaintext Plaintext

𝑘

Insecure channel

Recap: Symmetric-key Encryption

• Symmetric: the encryption and decryption keys are the same

5

BobAlice

𝑝

𝐸

𝑝 = 𝐷(𝑐, 𝑘)

𝐷

𝑘

𝑐 = 𝐸(𝑝, 𝑘)

CiphertextPlaintext Plaintext

𝑘

Insecure channel

How to share a secret

(e.g., AES key) over

an insecure channel?

Recap: Diffie-Hellman Key Exchange

• Symmetric: the encryption and decryption keys are the same

6

BobAlice

𝑝

𝐸

𝑝 = 𝐷(𝑐, 𝑘)

𝐷

𝑘

𝑐 = 𝐸(𝑝, 𝑘)

CiphertextPlaintext Plaintext

𝑘

Insecure channel

Diffie-Hellman key

exchange!

Recap: Diffie-Hellman Key Exchange 7

BobAlice Insecure channel

𝑝 = 23, 𝑔 = 9 𝑝 = 23, 𝑔 = 9
𝒃 = 𝟑𝒂 = 𝟒

𝐴 = (𝑔𝑎 𝑚𝑜𝑑 𝑝) = 6 𝐴 = (𝑔𝑎 𝑚𝑜𝑑 𝑝) = 6

𝑝 = 23, 𝑔 = 9

𝐴 = (𝑔𝑎 𝑚𝑜𝑑 𝑝) = 6

𝐴 = (𝑔𝑎 𝑚𝑜𝑑 𝑝) = 6

𝐵 = (𝑔𝑏 𝑚𝑜𝑑 𝑝) = 16 𝐵 = (𝑔𝑏 𝑚𝑜𝑑 𝑝) = 16

𝐵 = (𝑔𝑏 𝑚𝑜𝑑 𝑝) = 16
𝐾 = 𝑔𝑎𝑏 𝑚𝑜𝑑 𝑝

Symmetric key:

Recap: Diffie-Hellman Key Exchange 8

BobAlice Insecure channel

𝑝 = 23, 𝑔 = 9 𝑝 = 23, 𝑔 = 9
𝒃 = 𝟑𝒂 = 𝟒

𝐴 = (𝑔𝑎 𝑚𝑜𝑑 𝑝) = 6 𝐴 = (𝑔𝑎 𝑚𝑜𝑑 𝑝) = 6 𝐴 = (𝑔𝑎 𝑚𝑜𝑑 𝑝) = 6
𝐵 = (𝑔𝑏 𝑚𝑜𝑑 𝑝) = 16 𝐵 = (𝑔𝑏 𝑚𝑜𝑑 𝑝) = 16

𝐾 = 𝑔𝑎𝑏 𝑚𝑜𝑑 𝑝

Symmetric key:

𝐾 = 𝐵𝒂 𝑚𝑜𝑑 𝑝 = 𝑔𝑎𝑏𝑚𝑜𝑑 𝑝

 = 164 𝑚𝑜𝑑 23 = 9

𝐾 = 𝐴𝒃 𝑚𝑜𝑑 𝑝 = 𝑔𝑎𝑏𝑚𝑜𝑑 𝑝

 = 63 𝑚𝑜𝑑 23 = 9

𝑝 = 23, 𝑔 = 9

𝐴 = (𝑔𝑎 𝑚𝑜𝑑 𝑝) = 6
𝐵 = (𝑔𝑏 𝑚𝑜𝑑 𝑝) = 16

Recap: Security of the Diffie-Hellman Key Exchange9

𝐾 = 𝑔𝑎𝑏 𝑚𝑜𝑑 𝑝

Symmetric key: 𝑝 = 23, 𝑔 = 9

𝐴 = (𝑔𝑎 𝑚𝑜𝑑 𝑝) = 6
𝐵 = (𝑔𝑏 𝑚𝑜𝑑 𝑝) = 16

The attacker cannot efficiently

compute (𝑔𝑎𝑏 𝑚𝑜𝑑 𝑝)

without knowing 𝒂 and 𝒃

Recap: Asymmetric-key Cryptography

• 𝑝𝑘: public key, widely disseminated, used for encryption

• 𝑠𝑘: private key kept secretly, used for decryption

10

BobAlice

Encryption DecryptionPlaintext

Ciphertext

Bob’s

public key (𝑝𝑘)

Bob’s

private key (s𝑘)

RSA, Rabin, Elgamal,

Elliptic Curve

Cryptosystem(ECC), …

Recap: RSA Algorithm 11

BobAlice Insecure channel

Select two large

primes 𝑝 and 𝑞

Public place
𝑝 = 7, 𝑞 = 13

Recap: RSA Algorithm 12

BobAlice Insecure channel

Compute 𝑛 = 𝑝𝑞 and

𝜙 𝑛 = (𝑝 − 1)(𝑞 − 1)

Public place
𝑝 = 7, 𝑞 = 13
𝑛 = 91, 𝜙 𝑛 = 72

Recap: RSA Algorithm 13

BobAlice Insecure channel

Choose 𝑒 s.t.

• 1 < 𝑒 < 𝜙 𝑛 and

• gcd 𝜙 𝑛 , 𝑒 = 1

Public place
𝑝 = 7, 𝑞 = 13
𝑛 = 91, 𝜙 𝑛 = 72

𝑒 = 5

Recap: RSA Algorithm 14

BobAlice Insecure channel

Choose 𝑑 s.t.

• 1 < 𝑑 < 𝜙 𝑛 and

• (𝑒𝑑 𝑚𝑜𝑑 𝜙 𝑛) = 1

Public place
𝑝 = 7, 𝑞 = 13
𝑛 = 91, 𝜙 𝑛 = 72

𝑒 = 5
𝑑 = 29

How to find 𝑑?

→ Extended Euclidean Algorithm!

Recap: RSA Algorithm 15

BobAlice Insecure channel

Public place

𝑝 = 7, 𝑞 = 13
𝑛 = 91, 𝜙 𝑛 = 72

𝑒 = 5

𝑑 = 29
𝑒 = 5
𝑛 = 91

𝑒 = 5Bob’s

public key (𝑝𝑘) Bob’s private

key (s𝑘)

Public key: (𝑒, 𝑛)

Private key: 𝑑

Recap: RSA Algorithm 16

BobAlice Insecure channel

𝑝 = 7, 𝑞 = 13
𝑛 = 91, 𝜙 𝑛 = 72

𝑒 = 5

𝑑 = 29
𝑒 = 5
𝑛 = 91

𝑒 = 5Bob’s

public key (𝑝𝑘) Bob’s private

key (s𝑘)

𝑚 = 10

𝐸 𝐷
Ciphertext

𝑚 = 10

𝑐 = 𝐸 𝑚, 𝑝𝑘 = 𝑚𝑒 𝑚𝑜𝑑 𝑛

𝑐 = 82

𝑚 = 𝐷 𝑐, 𝑠𝑘 = 𝑐𝑑 𝑚𝑜𝑑 𝑛

Recap: Security of the RSA Algorithm 17

BobAlice Insecure channel

𝑝 = 7, 𝑞 = 13
𝑛 = 91, 𝜙 𝑛 = 72

𝑒 = 5

𝑑 = 29
𝑒 = 5
𝑛 = 91

𝑒 = 5Bob’s

public key (𝑝𝑘) Bob’s private

key (s𝑘)

𝑚 = 𝐷 𝑐, 𝑠𝑘 = 𝑐𝑑 𝑚𝑜𝑑 𝑛𝑐 = 𝐸 𝑚, 𝑝𝑘 = 𝑚𝑒 𝑚𝑜𝑑 𝑛

𝑛 = 𝑝𝑞

The attacker cannot

efficiently compute

𝑝 and 𝑞 from 𝑛

Recap: Digital Signature 18

BobAlice Bob’s

public key

Bob’s

private key

Sign

(encryption)

Ciphertext

Plaintext

Bob cannot deny that the

message is signed by the Bob

(non-repudiation)

Recap: Digital Signature 19

BobAlice Bob’s

public key

Bob’s

private key

Decryption
Sign

(encryption)

Ciphertext

PlaintextChaeeun Lee

Jaeeun Eom

This message is from Bob

(authentication)

Today’s Topic: Distribution of Public Keys 20

BobAlice Bob’s

public key

Bob’s

private key

How to distribute

public keys?

Public Announcement? 21

BobAlice Bob’s

public key

Here is bob’s public key:

 ADFECDBBF…

https://bob.unist.ac.kr
1. Access

Bob’s website

2. Get Bob’s

public key

Bob’s website

Notify in public place

https://bob.units.ac.kr/

Public Announcement? 22

Alice Attacker’s

public key

Here is bob’s public key:

 FDEAABF…

https://bobi.unist.ac.kr
1. Access

attacker’s website

2. Get attacker’s

public key Attacker’s

private key

Attacker’s website

https://bobi.unist.ac.kr/

Man-in-the-Middle (MITM) Attack 23

BobAlice

Bob’s

public key

Bob’s

private key

Attacker’s

public key

Attacker’s

private key

Man-in-the-Middle (MITM) Attack 24

BobAlice

Bob’s

public key

Bob’s

private key

Attacker’s

public key

Attacker’s

private key

Motivation 25

BobAlice

Encryption DecryptionPlaintext

Ciphertext

Bob’s

public key

Bob’s

private key

How can we trust that this

public key belongs to Bob?

Public-key Infrastructure
(PKI)

Public-Key Infrastructure 27

BobAlice

Encryption DecryptionPlaintext

Ciphertext

Bob’s

public key

Bob’s

private key

Public-Key Infrastructure (PKI)

Key Idea of Public-Key Infrastructure 28

BobAlice

Certificate

Authority (CA)

BobAlice

Key Idea of Public-Key Infrastructure 29

Certificate

Authority (CA)

BobAlice

Trusted 3rd-party authority

(KISA, yesSign, Verisign …)

Key Idea of Public-Key Infrastructure 30

Certificate

Authority (CA)

BobAlice

Manage, distribute, verify

public-keys

Key Idea of Public-Key Infrastructure 31

Certificate

Authority (CA)

BobAlice

Bob’s

public key

Digital Certificate

✓ Subject: Bob

✓ Expires: 11/25/2034

✓ Bob’s public key:
ADFECDBBF…

Bind user’s identity to

public key

Key Idea of Public-Key Infrastructure 32

Certificate

Authority (CA)

BobAlice

Bob’s

public key

Digital Certificate

✓ Subject: Bob

✓ Expires: 11/25/2034

✓ Bob’s public key:
ADFECDBBF…

Bind user’s identity to

public key

Digital signature of CA

(signed with CA’s private key)

→ Hash-based digital signature

Hash-based Digital Signature in PKI 33

Digital Certificate

✓ Subject: Bob

✓ Expires: 11/25/2034

✓ Bob’s public key:
ADFECDBBF…

Hash

function

0101000010.
.

Certificate

Authority (CA)

Encrypt with

CA’s private key

Signing

Hash-based Digital Signature in PKI 34

Digital Certificate

✓ Subject: Bob

✓ Expires: 11/25/2034

✓ Bob’s public key:
ADFECDBBF…

Hash

function

0101000010.
.

Certificate

Authority (CA)

Encrypt with

CA’s private key

Append

Signing

Key Idea of Public-Key Infrastructure 35

Certificate

Authority (CA)

BobAlice

Bob’s

public key

Digital

Certificate

Bob’s

public key

CA’s

sign Verify CA’s signature (via

hash comparison) and

confirm Bob’s public key

Hash-based Digital Signature in PKI 36

Digital Certificate

✓ Subject: Bob

✓ Expires: 11/25/2034

✓ Bob’s public key:
ADFECDBBF…

Verification

Alice

Hash-based Digital Signature in PKI 37

Digital Certificate

✓ Subject: Bob

✓ Expires: 11/25/2034

✓ Bob’s public key:
ADFECDBBF…

Hash

function

0101000010..Decrypt with

CA’s public key

Verification

Alice

0101000010..

1. Confirm Bob’s public key

2. Integrity check

?

Key Idea of Public-Key Infrastructure 38

Certificate

Authority (CA)

BobAlice

Bob’s

public key

Digital

Certificate

Bob’s

public key

CA’s

sign Verify CA’s signature (via

hash comparison) and

confirm Bob’s public key

Ciphertext

Public-Key Infrastructure (PKI)

• The set of processes required to create, manage, distribute,
use, store, and revoke digital certificates and public-keys

• Two important components
− Certificate Authority (CA): a trusted party, responsible for verifying

the identity of users, and then bind the verified identity to a public keys

− Digital Certificates: a document certifying that the public key included
inside does belong to the identity described in the document
▪ X.509 standard

39

X.509 Certificate 40

Signature

Public key

Chain of Trust 41

Certificate

Authority (CA)

Alice

Digital

Certificate

Bob’s

public key

CA’s

sign

Recursive concern:

How can we trust that the

public key belongs to CA?

Verify CA’s signature (via

hash comparison) and

confirm Bob’s public key

Chain of Trust 42

Root CA

Sub CA 1 Sub CA 2 Sub CA 2

…. …. ….

Root CA’s Digital

Certificate

Root CA’s

public key

Self

sign

Sub CA’s Digital

Certificate

Root CA’s

sign

Embedded in

OS or web browsers

Sub CA’s

public key

Chain of Trust 43

Root CA

Sub CA 1 Sub CA 2 Sub CA 2

…. …. ….

Root CA’s Digital

Certificate

Root CA’s

public key

Self

sign

Sub CA’s Digital

Certificate

Sub CA’s

public key

Root CA’s

sign Signed with

root CA’s public key

Chain of Trust 44

Root CA’s Digital

Certificate

Root CA’s

public key

Self

signSub CA’s Digital

Certificate

Sub CA’s

public key

Root CA’s

sign

Bob’s Digital

Certificate

Bob’s

public key

Sub CA’s

sign

Alice

I want to verify that this
public key belongs to Bob!

Verify

Verify

Chain of Trust 45

Root CA’s Digital

Certificate

Root CA’s

public key

Self

signSub CA’s Digital

Certificate

Sub CA’s

public key

Root CA’s

sign

Bob’s Digital

Certificate

Bob’s

public key

Sub CA’s

sign

Alice

I want to verify that this
public key belongs to Bob!

Verify

VerifyEmbedded in

OS or web browsers

Certificate Authority and Root CA

• Users need some “Root” keys to start with
− Root CA’s Certificate

− Embedded in OS or web browsers

▪ (Example #1) Root CAs for iOS: https://support.apple.com/en-us/HT208125

▪ (Example #2) Chrome

• An example chain of CAs assuring the shinhancard.com:

46

https://support.apple.com/en-us/HT208125

The Core Functionalities of CA

1. Verify the subject

− Ensure that the person applying for the certificate either owns or

represents the identity in the subject field

2. Signing digital certificates

− CA generates a digital signature for the certificate using its private key

− Once the signature is applied, the certificate cannot be modified

− Signatures can be verified by anyone with the CA’s public key

47

Digital Certificate

• Let’s get paypal’s certificates

• Save the above data to paypal.pem, and use the following
command decode it (see next slide)

48

Example of X.509 Certificate (1st Part) 49

The CA’s identity

(Symantec)

The owner of the

certificate

(paypal)

Example of X.509 Certificate (2nd Part) 50

Public

key

CA’s

signature

Integrity

Encryption vs Integrity

• “Encryption hides message contents and thus adversary cannot
modify the encrypted message” [T / F]?

52

In many cases, message integrity is

equally (or more) important

Recap: Integrity

• Information has not been altered in an unauthorized way

• How to ensure the integrity of computer systems?

53

Cryptographic

hash function

(e.g., SHA256)

Cryptographic Hash Functions

• Condense arbitrary message to fixed size (512 bit…)

• (important!) No key for input

• Usually assume hash function is public (e.g., MD5, SHA-512, etc.)

54

0101010010000101010000001000010101011010101001000010101000
0001000010101011010101001001111110010010001000010101011011
11101000101010000111110100101010010100101010111111...

01011010101001011111111

Hash function

Hash Usage Example 55

BobAlice Insecure channel

𝑥

𝐻

𝐻(𝑥)

𝑥

𝐻(𝑥)

Hash Usage Example 56

BobAlice Insecure channel

𝑥

𝐻

𝐻(𝑥)

𝑥
𝐻(𝑥)

𝑥

𝐻(𝑥)

𝑥
𝐻(𝑥)

Hash Usage Example 57

BobAlice Insecure channel

𝑥

𝐻 𝑥
𝐻(𝑥)𝐻(𝑥) 𝐻(𝑥)

𝑥

𝑥

Hash Usage Example 58

BobAlice Insecure channel

𝑥

𝐻 𝑥

𝑥

𝑥
𝐻(𝑥) 𝐻(𝑥) 𝐻(𝑥)

𝑥

Hash Usage Example 59

BobAlice Insecure channel

𝑥

𝐻 𝑥

𝑥

𝐻

𝐻(𝑥)
?

Check integrity!

𝐻(𝑥) 𝐻(𝑥) 𝐻(𝑥)

Hash Function Requirements

1. Preimage resistant

2. Second preimage resistant

3. Collision resistant

4. Efficiency: It is relatively easy to compute for any give input.

60

Property #1: Preimage Resistant

• Given 𝑦, computationally infeasible to find 𝑥 such that 𝐻(𝑥) = 𝑦
− So-called one-way property

61

01010100100001010100
00001000010101011010
10100100001010100000
01000010101011...

0101101010100101111𝐻

𝒙 𝒚

Property #1: Preimage Resistant

• Given 𝑦, computationally infeasible to find 𝑥 such that 𝐻(𝑥) = 𝑦
− So-called one-way property

62

01010100100001010100
00001000010101011010
10100100001010100000
01000010101011...

0101101010100101111𝐻

𝒙 𝒚

Easy to calculate 𝑦

Given 𝑦, it should be

infeasible to compute 𝑥

Property #1: Preimage Resistant

• Given 𝑦, computationally infeasible to find 𝑥 such that 𝐻(𝑥) = 𝑦
− So-called one-way property

• Example:

−Factoring: 𝐻(𝑥1, 𝑥2) = 𝑥1 × 𝑥2where 𝑥1, 𝑥2 are prime numbers

−Discrete logarithm: 𝐻(𝑥) = 𝑘𝑥 𝑚𝑜𝑑 𝑝

63

01010100100001010100
00001000010101011010
10100100001010100000
01000010101011...

0101101010100101111𝐻

𝒙 𝒚

Application: Password Storage

• Goal: store ID and password pairs to authenticate users

• Bad approach: store ID and password pairs in plaintext to a DB

64

ID Password

Kihun 1234abcd

Donguk verysecure

Minseok 1234abcd

Application: Hash-based Password Storage

• Hashing passwords

65

ID Password

Kihun 𝐻(1234abcd)

Donguk 𝐻(verysecure)

Minseok 𝐻(1234abcd)

The attacker is not

able to calculate

“verysecure”

Application: Hash-based Password Storage

• Hashing passwords

66

ID Password

Kihun 𝐻(1234abcd)

Donguk 𝐻(verysecure)

Minseok 𝐻(1234abcd)

Donguk

Login

• ID: Donguk

• PW: verysecure

𝐻
𝐻(verysecure)

Matching

Application: Hash-based Password Storage

• Hashing passwords

• BTW, why do we need strong password requirements?

67

ID Password

Kihun 𝐻(1234abcd)

Donguk 𝐻(verysecure)

Minseok 𝐻(1234abcd)

Same password →

Same hash value

Application: Salted Hash

• Hashing passwords

• BTW, why do we need strong password requirements?

=> Salted Hash: use a randomly generated number (a salt) to
make a hash.

68

ID Salt Password

Kihun 𝟐𝟑 𝐻(1234abcd, 𝟐𝟑)

Donguk 𝟓𝟏 𝐻(verysecure, 𝟓𝟏)

Minseok 𝟗𝟕 𝐻(1234abcd, 𝟗𝟕)

Property #2: Second Preimage Resistant

• Given 𝑥, computationally infeasible to find z such that 𝑥 ≠ 𝑧 and
𝐻(𝑥) = 𝐻(𝑧)

69

BobAlice Insecure channel

𝑥

𝐻

𝐻(𝑥)

Property #2: Second Preimage Resistant

• Given 𝑥, computationally infeasible to find z such that 𝑥 ≠ 𝑧 and
𝐻(𝑥) = 𝐻(𝑧)

70

BobAlice Insecure channel

𝑥

𝐻

𝐻(𝑥)

Expect a message

with hash value 𝐻(𝑥)

Property #2: Second Preimage Resistant

• Given 𝑥, computationally infeasible to find z such that 𝑥 ≠ 𝑧 and
𝐻(𝑥) = 𝐻(𝑧)

71

BobAlice Insecure channel

𝑥

𝐻

𝐻(𝑥)

𝑥

𝐻(𝑥)

𝑥
𝐻(𝑥)

Property #2: Second Preimage Resistant

• Given 𝑥, computationally infeasible to find z such that 𝑥 ≠ 𝑧 and
𝐻(𝑥) = 𝐻(𝑧)

72

BobAlice Insecure channel

𝑥

𝐻

𝐻(𝑥)

𝑥
𝐻(𝑥)

𝑥
𝐻(𝑥)

𝑧
𝐻(𝑧)

Create another

message 𝑥 ≠ 𝑧 but

𝐻(𝑥) = 𝐻(𝑧)

Property #2: Second Preimage Resistant

• Given 𝑥, computationally infeasible to find z such that 𝑥 ≠ 𝑧 and
𝐻(𝑥) = 𝐻(𝑧)

73

BobAlice Insecure channel

𝑥

𝐻

𝐻(𝑥)

𝑥
𝐻(𝑥)

𝑥
𝐻(𝑥)

𝑧
𝐻(𝑧)

Create another

message 𝑥 ≠ 𝑧 but

𝐻(𝑥) = 𝐻(𝑧)

Property #2: Second Preimage Resistant

• Given 𝑥, computationally infeasible to find z such that 𝑥 ≠ 𝑧 and
𝐻(𝑥) = 𝐻(𝑧)

• Example: integrity of software distribution, fingerprinting (e.g.,
virus, deduplication)

74

Property #3: Collision Resistant

• Computationally infeasible to find any pair (𝒙, 𝒛) such that 𝑥 ≠ 𝑧
and 𝐻(𝑥) = 𝐻(𝑧)

75

Property #3: Collision Resistant

• Computationally infeasible to find any pair (𝒙, 𝒛) such that 𝑥 ≠ 𝑧
and 𝐻(𝑥) = 𝐻(𝑧)

76

𝐻

𝑥

𝐻(𝑥)

𝑧

𝐻(𝑧)

𝐻

Any pair (𝑥, 𝑧) How much work is

needed to break

this resistance?

Birthday Paradox

How many people must be in a group, such
that there is more than 50% probability that at
least two of them have the same birthday?

 => 23 people

 (Birthday paradox)

77

Birthday Paradox

• Find 𝑛 such that 𝑝 𝑛 ≥ 0.5
− # of people in the group: 𝑛

− A year has 365 days

• 𝑝(𝑛) = 1 − 𝑝(𝑛)

78Probability that in a set

of 𝑛 random people, at least two

will share a birthday

Probability that all 𝑛 people

have different birthdays

Birthday Paradox

• Find 𝑛 such that 𝑝 𝑛 ≥ 0.5
− # of people in the group: 𝑛

− A year has 365 days

• 𝑝(𝑛) = 1 − 𝑝(𝑛)

• If 𝑛 = 3,

P 3 = 1 −
365

365
×

364

365
×

363

365
= 1 − 0.9917 = 0.0083

79

Probability that all 𝑛 people

have different birthdays

Probability that in a set

of 𝑛 random people, at least two

will share a birthday

Birthday Paradox

• Find 𝑛 such that 𝑝 𝑛 ≥ 0.5
− # of people in the group: 𝑛

− A year has 365 days

• 𝑝(𝑛) = 1 − 𝑝(𝑛)

• If 𝑛 = 3,

P 3 = 1 −
365

365
×

364

365
×

363

365
= 1 − 0.9917 = 0.0083

80

Probability that all 𝑛 people

have different birthdays

Probability that in a set

of 𝑛 random people, at least two

will share a birthday

Birthday Paradox

• Find 𝑛 such that 𝑝 𝑛 ≥ 0.5
− # of people in the group: 𝑛

− A year has 365 days

• 𝑝(𝑛) = 1 − 𝑝(𝑛)

• If 𝑛 = 3,

P 3 = 1 −
365

365
×

364

365
×

363

365
= 1 − 0.9917 = 0.0083

81

If we put 𝑛 = 23, the probability

is 50.7%

Property #3: Collision Resistant

• Computationally infeasible to find any pair (𝒙, 𝒛) such that 𝑥 ≠ 𝑧
and 𝐻(𝑥) = 𝐻(𝑧)

• Birthday attack: If we have an 𝑚 bit hash value, 𝟐𝒎/𝟐 work is
needed to break collision resistant (not 2𝑚, birthday paradox)

− To ensure security against 2𝑛 attacks, the hash output length must be
2𝑛-bits

82

Hash Function Standards

• MD5
− Pairs of collisions reported

− Still used for simple data diffing

• SHA-1
− Pairs of collisions reported

− Broken

• SHA-256, SHA-384, SHA-512 (message digest size)

84

SHA-512 Overview 85

Skip the detailed content of

the compression function

(Skip) Compression Function 86

Recap: Second Preimage Resistant 87

BobAlice Insecure channel

𝑥

𝐻(𝑥)

𝑥
𝐻(𝑥)

𝑥
𝐻(𝑥)

𝑧
𝐻(𝑧)

Need some mechanism for

satisfying both integrity

and authentication

𝐻

Motivation 88

• In the case of asymmetric cryptography, integrity and authentication
can be ensured through hash-based digital signatures

• Q. In the case of symmetric cryptography, how can both integrity
and authentication be ensured?

 → Message Authentication Codes (MAC)

Message Authentication Codes (MAC) 89

“Cryptographic checksum” to ensure the integrity of the message
and the data origin authentication (in symmetric-key cryptography)

Message Authentication Codes (MAC) 90

BobAlice Insecure channel

𝑥

𝑀𝐴𝐶

𝑚𝑎𝑐(𝑥)

Use the symmetric key!

Message Authentication Codes (MAC) 91

BobAlice Insecure channel

𝑥

𝑀𝐴𝐶

𝑚𝑎𝑐(𝑥)

𝑥
𝑚𝑎𝑐(𝑥)

𝑥

𝑚𝑎𝑐(𝑥)

𝑥
𝑚𝑎𝑐(𝑥)

Message Authentication Codes (MAC) 92

BobAlice Insecure channel

𝑥

𝑀𝐴𝐶

𝑚𝑎𝑐(𝑥)

𝑥
𝑚𝑎𝑐(𝑥)

𝑥
𝑚𝑎𝑐(𝑥)

𝑥
𝑚𝑎𝑐(𝑥)

Message Authentication Codes (MAC) 93

BobAlice Insecure channel

𝑥

𝑀𝐴𝐶

𝑚𝑎𝑐(𝑥)

𝑥
𝑚𝑎𝑐(𝑥)

𝑥

𝑥

𝑥
𝑚𝑎𝑐(𝑥)

Message Authentication Codes (MAC) 94

BobAlice Insecure channel

𝑥

𝑀𝐴𝐶

𝑚𝑎𝑐(𝑥)

𝑥
𝑚𝑎𝑐(𝑥)

𝑥

𝑀𝐴𝐶

𝑚𝑎𝑐(𝑥)

?

Check both integrity

and authenticity

Message Authentication Codes (MAC)

“Cryptographic checksum” to ensure the integrity of the message
and the data origin authentication (in symmetric-key cryptography)

• CBC-MAC, CMAC, OMAC, HMAC, …

95

MAC Algorithm Example: HMAC

• For your information ☺

96

Holy Grail of Cryptography

• Is it possible to provide a secure public service?
−i.e., computations on encrypted data

• Example
−Average GPA in the class with encrypted individual GPAs

−Covid-19 alert with encrypted location information

−Election with encrypted votes

• Necessary property: homomorphism
−𝐷𝑒𝑐(𝑐1 ⊕ 𝑐2) = 𝐷𝑒𝑐(𝑐1) ⊕ 𝐷𝑒𝑐(𝑐2)

98

Homomorphic Encryption (동형 암호) 99

• Allows computations on encrypted data

• “A Fully Homomorphic Encryption Scheme”, C. Gentry, 2009

• Applications:

100A Simplified Symmetric Homomorphic Encryption

• Plaintext space: {0,1}

• Secret key: 𝑝

• Random numbers: 𝑞 and 𝜖

• Encryption: 𝐸𝑛𝑐(𝑚) = 𝑚 + 𝑝𝑞 + 2𝜖

• Decryption: 𝐷𝑒𝑐(𝑐) = (𝑐 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑2

• Homomorphism

−𝐷𝑒𝑐 𝐸𝑛𝑐 𝑚1 + 𝐸𝑛𝑐 𝑚2 = 𝐷𝑒𝑐 𝐸𝑛𝑐 𝑚1 + 𝑚2 = 𝑚1 + 𝑚2

−𝐷𝑒𝑐(𝐸𝑛𝑐(𝑚1) × 𝐸𝑛𝑐(𝑚2)) = 𝐷𝑒𝑐(𝐸𝑛𝑐(𝑚1 × 𝑚2)) = 𝑚1 × 𝑚2

Summary

• Public-Key Infrastructure
− Certificate Authority (CA)

− Digital Certificate

− Chain of trust

• Cryptographic Hash Functions
− Preimage resistant

− Second preimage resistant

− Collision resistant

• Message Authentication Codes (MAC)
− Check both integrity and authenticity for symmetric key environment

• Homomorphic Encryption

101

Question?

	Slide 1
	Slide 2: Notification: Homework #1
	Slide 3: Notification: Quiz #1
	Slide 4: Recap: Symmetric-key Encryption
	Slide 5: Recap: Symmetric-key Encryption
	Slide 6: Recap: Diffie-Hellman Key Exchange
	Slide 7: Recap: Diffie-Hellman Key Exchange
	Slide 8: Recap: Diffie-Hellman Key Exchange
	Slide 9: Recap: Security of the Diffie-Hellman Key Exchange
	Slide 10: Recap: Asymmetric-key Cryptography
	Slide 11: Recap: RSA Algorithm
	Slide 12: Recap: RSA Algorithm
	Slide 13: Recap: RSA Algorithm
	Slide 14: Recap: RSA Algorithm
	Slide 15: Recap: RSA Algorithm
	Slide 16: Recap: RSA Algorithm
	Slide 17: Recap: Security of the RSA Algorithm
	Slide 18: Recap: Digital Signature
	Slide 19: Recap: Digital Signature
	Slide 20: Today’s Topic: Distribution of Public Keys
	Slide 21: Public Announcement?
	Slide 22: Public Announcement?
	Slide 23: Man-in-the-Middle (MITM) Attack
	Slide 24: Man-in-the-Middle (MITM) Attack
	Slide 25: Motivation
	Slide 26: Public-key Infrastructure (PKI)
	Slide 27: Public-Key Infrastructure
	Slide 28: Key Idea of Public-Key Infrastructure
	Slide 29: Key Idea of Public-Key Infrastructure
	Slide 30: Key Idea of Public-Key Infrastructure
	Slide 31: Key Idea of Public-Key Infrastructure
	Slide 32: Key Idea of Public-Key Infrastructure
	Slide 33: Hash-based Digital Signature in PKI
	Slide 34: Hash-based Digital Signature in PKI
	Slide 35: Key Idea of Public-Key Infrastructure
	Slide 36: Hash-based Digital Signature in PKI
	Slide 37: Hash-based Digital Signature in PKI
	Slide 38: Key Idea of Public-Key Infrastructure
	Slide 39: Public-Key Infrastructure (PKI)
	Slide 40: X.509 Certificate
	Slide 41: Chain of Trust
	Slide 42: Chain of Trust
	Slide 43: Chain of Trust
	Slide 44: Chain of Trust
	Slide 45: Chain of Trust
	Slide 46: Certificate Authority and Root CA
	Slide 47: The Core Functionalities of CA
	Slide 48: Digital Certificate
	Slide 49: Example of X.509 Certificate (1st Part)
	Slide 50: Example of X.509 Certificate (2nd Part)
	Slide 51: Integrity
	Slide 52: Encryption vs Integrity
	Slide 53: Recap: Integrity
	Slide 54: Cryptographic Hash Functions
	Slide 55: Hash Usage Example
	Slide 56: Hash Usage Example
	Slide 57: Hash Usage Example
	Slide 58: Hash Usage Example
	Slide 59: Hash Usage Example
	Slide 60: Hash Function Requirements
	Slide 61: Property #1: Preimage Resistant
	Slide 62: Property #1: Preimage Resistant
	Slide 63: Property #1: Preimage Resistant
	Slide 64: Application: Password Storage
	Slide 65: Application: Hash-based Password Storage
	Slide 66: Application: Hash-based Password Storage
	Slide 67: Application: Hash-based Password Storage
	Slide 68: Application: Salted Hash
	Slide 69: Property #2: Second Preimage Resistant
	Slide 70: Property #2: Second Preimage Resistant
	Slide 71: Property #2: Second Preimage Resistant
	Slide 72: Property #2: Second Preimage Resistant
	Slide 73: Property #2: Second Preimage Resistant
	Slide 74: Property #2: Second Preimage Resistant
	Slide 75: Property #3: Collision Resistant
	Slide 76: Property #3: Collision Resistant
	Slide 77: Birthday Paradox
	Slide 78: Birthday Paradox
	Slide 79: Birthday Paradox
	Slide 80: Birthday Paradox
	Slide 81: Birthday Paradox
	Slide 82: Property #3: Collision Resistant
	Slide 84: Hash Function Standards
	Slide 85: SHA-512 Overview
	Slide 86: (Skip) Compression Function
	Slide 87: Recap: Second Preimage Resistant
	Slide 88: Motivation
	Slide 89: Message Authentication Codes (MAC)
	Slide 90: Message Authentication Codes (MAC)
	Slide 91: Message Authentication Codes (MAC)
	Slide 92: Message Authentication Codes (MAC)
	Slide 93: Message Authentication Codes (MAC)
	Slide 94: Message Authentication Codes (MAC)
	Slide 95: Message Authentication Codes (MAC)
	Slide 96: MAC Algorithm Example: HMAC
	Slide 98: Holy Grail of Cryptography
	Slide 99: Homomorphic Encryption (동형 암호)
	Slide 100: A Simplified Symmetric Homomorphic Encryption
	Slide 101: Summary
	Slide 102: Question?

